×

zbMATH — the first resource for mathematics

On the spectrum of a nonlinear operator. (English) Zbl 0329.47023
MSC:
47J05 Equations involving nonlinear operators (general)
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] H. Cartan F. Bruhat: Sur la structure des sousensembles analytiques réels. Comptes Rendus, vol. 244, 1957, p. 988.
[2] S. Fučík J. Nečas J. Souček V. Souček: Upper bound for the numbers of critical levels for nonlinear operators in Banach spaces of the type of second order nonlinear partial differential operators. Journal Funct. Anal. 11, 1972, p. 314-322. · Zbl 0252.47072
[3] S. Fučík J. Nečas J. Souček V. Souček: Upper bound for the number of eigenvalues for nonlinear operators. Ann. Scuola Norm. Sup. Pisa, 27, 1973, p. 53 - 71. · Zbl 0263.58007
[4] S. Fučík J. Nečas J. Souček V. Souček: Strenghthening upper bound for the number of critical levels of nonlinear functionals. Comm. Math. Univ. Carol. 13, 1972, p. 297-310. · Zbl 0253.58006
[5] S. Fučík J. Nečas J. Souček V. Souček: New infinite dimensional versions of Morse-Sard theorem. Boll. Unione Mat. Ital. 6, 1972, p. 317-322. · Zbl 0263.58006
[6] S. Fučík J. Nečas J. Souček V. Souček: Remarks on M. A. Krasnoselskij’s main bifurcation theorem. · Zbl 0256.35030
[7] S. Fučík J. Nečas J. Souček V. Souček: Note to nonlinear spectral theory: Application to the nonlinear integral equations of the Lichtenstein type. · Zbl 0273.45005
[8] S. Fučík J. Nečas J. Souček V. Souček: Spectral analysis of nonlinear operators. Lecture Notes in Math., Springer-Verlag, vol. 346. · Zbl 0268.47056
[9] R. C. Gunning H. Rossi: Analytic functions of several complex variables. PrenticeHall, 1965. · Zbl 0141.08601
[10] M. Hervé: Функции многих комплексных переменных. (Functions of several complex variables), Москва, 1965.
[11] M. Kučera: Hausdorff measure of the set of critical values of functions of the class \(C^{k, \alpha}\). Comm. Math. Univ. Carol. 13, 1972, p. 333-350.
[12] J. Milnor: Особые точки комплексных гиперповерхностей. (Singular points of complex hypersurfaces), Москва, 1971. · Zbl 0265.10013
[13] R. Narasimhan: Анализ на действительных и комплексных многообразниях. (Analysis on real and complex manifolds), Москва, 1971. · Zbl 0257.22014
[14] S. Fučík J. Nečas: Ljustennik-Schnirelmann theorem and nonlinear eigenvalue problems. Math. Nachr. 53, 1972, p. 277-289. · Zbl 0215.21202
[15] A. Sard: The measure of the critical set values of the differentiable mapping. Bull. Am. Math. Soc., 48, 1942, p. 883-890. · Zbl 0063.06720
[16] V. Souček: O spektru nelineárních operátorů. (On the spectrum of nonlinear operators), these, Praha 1973.
[17] E. Spanier: Алгебраическая топология. Москва, 1971. · Zbl 0235.68029
[18] J. Souček V. Souček: Morse-Sard theorem for real-analytic functions. Comm. Math. Univ. Carol. 13, 1972, p. 45-51. · Zbl 0235.26012
[19] M. M. Vajnberg: Variational methods for the study of nonlinear operators. Holden-Day, 1964. · Zbl 0122.35501
[20] H. Whitney F. Bruhat: Quelques propriétés fondamentales des ensembles analytiquesréels. Comment. Math. Helvetici, 33, 1959, p. 132-160. · Zbl 0100.08101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.