Eigenvalue comparison theorems and its geometric applications. (English) Zbl 0329.53035


53C20 Global Riemannian geometry, including pinching
35P15 Estimates of eigenvalues in context of PDEs
Full Text: DOI EuDML


[1] Berger, M., Gauduchon, P., Mazet, E.: Le spectre d’une vari?t? Riemannienne. Lecture Notes in Mathematics 194. Berlin-Heidelberg-New York: Springer 1971 · Zbl 0223.53034
[2] Bishop, R., Crittenden, R.: Geometry of Manifolds. New York-London: Academic Press 1964 · Zbl 0132.16003
[3] Chavel, I., Feldman, E.: The first eigenvalue of the Laplacian on manifolds of non-negative curvature. CUNY preprint · Zbl 0291.53021
[4] Cheeger, J.: The relation between the Laplacian and the diameter for manifolds of non-negative curvature. Arch. der Math.19, 558-560 (1968) · Zbl 0177.50201 · doi:10.1007/BF01898781
[5] Cheng, S. Y.: Eigenvalue and eigenfunctions of the Laplacian. To appear in the Proceedings of the Symposium on Differential Geometry. (Stanford University, 1973)
[6] Hobson, E.W.: Spherical and Ellipsoidal Harmonics. New York: Chelsea 1955 · Zbl 0004.21001
[7] Klingenberg, W.: Contribution to Riemannian geometry in the large. Ann. of Math., II. Ser.69, 654-666 (1959) · Zbl 0133.15003 · doi:10.2307/1970029
[8] Mazet, E.: Une majoration de ?1 du type de Cheeger. C.r. Acad. Sci., Paris, S?r. A,277, 171-174 (1973) · Zbl 0264.53021
[9] McKean, H.P. Jr.: An upper bound to the spectrum on a manifold of negative curvature. J. diff. Geometry4, 359-366 (1970) · Zbl 0197.18003
[10] Payne, L.E.: Isoperimetric inequalities and their applications. SIAM Review9, 453-488 (1967) · Zbl 0154.12602 · doi:10.1137/1009070
[11] Watson, G.N.: A treatise on the theory of Bessel functions. Cambridge: Cambridge University Press 1944; New York: MacMillan 1944 · Zbl 0063.08184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.