The inclusion of the substitution closure of linear and one-counter languages in the largest sub-AFL of the family of algebraic languages is proper. (English) Zbl 0329.68067


68Q45 Formal languages and automata
Full Text: DOI


[1] Boasson, L., \(3^{rd}\) Ann. ACM Symp. on Theory of Computing, 116-120 (1970)
[2] Boasson, L.; Nivat, M., Acta. Informatica, 2, 180-188 (1973) · Zbl 0242.68037
[3] Chumsky, N.; Schutzenberger, M. P., Computer programming and formal systems (1963), North Holland Publishing Co: North Holland Publishing Co Amsterdam · Zbl 0108.13402
[4] Eilenberg, S., Communication au Congrès International des Mathématiciens (1970), Nice
[5] Elgot, C. C.; Mezei, J. E., IBM J. Res. and Dev., 2, 47-68 (1962) · Zbl 0135.00704
[6] Ginsburg, S., The mathematical theory of context-free languages (1966), Mc Graw-Hill · Zbl 0184.28401
[7] Ginsburg, S.; Greibach, S.; Hopgroft, J., Memoirs of the Amer. Math. Soc., 113, 285-296 (1966)
[8] Greibach, S., Math. System Theory, 4, 231-242 (1970) · Zbl 0203.30102
[9] Nivat, M., Grenoble, 18, 339-445 (1968)
[10] Nivat, M., Transduction des Langages de Chomsky, Thèse Minéographiée (1967), Paris
[11] Ogden, W., Math. System. Theory, 2, 191-194 (1968) · Zbl 0175.27802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.