zbMATH — the first resource for mathematics

The inclusion of the substitution closure of linear and one-counter languages in the largest sub-AFL of the family of algebraic languages is proper. (English) Zbl 0329.68067

68Q45 Formal languages and automata
Full Text: DOI
[1] Boasson, L., 3^rd ann. ACM symp. on theory of computing, 116-120, (1970)
[2] Boasson, L.; Nivat, M., Acta. informatica, 2, 180-188, (1973)
[3] Chumsky, N.; Schutzenberger, M.P., Computer programming and formal systems, (1963), North Holland Publishing Co Amsterdam
[4] Eilenberg, S., Communication au congrès international des mathématiciens, (1970), Nice
[5] Elgot, C.C.; Mezei, J.E., IBM J. res. and dev., 2, 47-68, (1962)
[6] Ginsburg, S., The mathematical theory of context-free languages, (1966), Mc Graw-Hill · Zbl 0184.28401
[7] Ginsburg, S.; Greibach, S.; Hopgroft, J., Memoirs of the amer. math. soc., 113, 285-296, (1966)
[8] Greibach, S., Math. system theory, 4, 231-242, (1970)
[9] Nivat, M., Grenoble, 18, 339-445, (1968)
[10] Nivat, M., Transduction des langages de chomsky, Thèse minéographiée, (1967), Paris
[11] Ogden, W., Math. system. theory, 2, 191-194, (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.