×

Orthoimplication algebras. (English) Zbl 0331.02036


MSC:

03G05 Logical aspects of Boolean algebras
06C15 Complemented lattices, orthocomplemented lattices and posets
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] J. C. Abbott,Sets, lattices and Boolean algebras, Allyn and Bacon, Boston, 1970.
[2] –,Semi-Boolean algebra,Matematicki Vesnik 4(19) Cb 1967, pp. 177–198.
[3] –,Implicational algebras,Bulletin de la Société Mathematique de la Romainie, Vol. 11 (59) No. 1 (1967), pp. 3–23.
[4] P. Halmos,Finite dimensional Hilbert spaces,The American Mathematical Monthly, 77 (1970). · Zbl 0192.46902
[5] S. S. Holland, jr.,The current interest in orthomodular lattices,Trends in lattice theory, ed. J. C. Abbott, Van Nostrand Reinhold, New York, 1969.
[6] J. Lěvy-Bruhl,Introduction aux structures algébriques, Dunod, Paris, 1968.
[7] H. Rasiowa andR. Sikorski,The mathematics of metamathematics, PWN, Warsaw, 1970. · Zbl 0122.24311
[8] H. Rasiowa,An algebraic approach to non-classical logics, North-Holland/American Elsevier, Amsterdam, 1974. · Zbl 0299.02069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.