zbMATH — the first resource for mathematics

Pairs of edge-disjoint Hamiltonian circuits. (English) Zbl 0331.05118

05C35 Extremal problems in graph theory
Full Text: DOI EuDML
[1] Faulkner, G. B. andYounger, D. H.,Non-Hamiltonian cubic planar maps. Discrete Math.7 (1974), 67–74. · Zbl 0271.05106
[2] Grinberg, E. Ja.,Plane homogeneous graphs of degree three without Hamiltonian circuits (in Russian), Latvian Math. Yearbook4, pp. 51–58. Izdat. ’Zinatne’, Riga, 1968. · Zbl 0185.27901
[3] Grünbaum, B.,Polytopes, graphs, and complexes. Bull. Amer. Math. Soc.76 (1970), 1131–1201. · Zbl 0211.25001
[4] Grünbaum, B. andWalther, H.,Shortness exponents of families of graphs. J. Combinatorial Theory Ser. A14 (1973), 364–385. · Zbl 0263.05103
[5] Grünbaum, B. andZaks, J.,The existence of certain planar maps. Discrete Math.10 (1974), 93–115. · Zbl 0298.05112
[6] Honsberger, R.,Mathematical gems. Dolciani Mathematical Expositions, Number 1. Math. Assoc. of America, Washington, D.C., 1973. · Zbl 0281.00004
[7] Martin, P.,Cycles Hamiltoniens dans les graphes 4-reguliers 4-connexes. Aequationes Math.14, (1975), 33–35.
[8] Meredith, G. H. J.,Regular n-valent n-connected nonHamiltonian non-n-edge-colorable graphs. J. Combinatorial Theory Ser. B14 (1973), 55–60. · Zbl 0237.05106
[9] Nash-Williams, C. St.-J. A.,Possible directions in graph theory. InCombinatorial Mathematics and its Applications, D. J. A. Welsh, (ed.), Academic Press, London, 1971, pp. 191–200. · Zbl 0218.05051
[10] Ore, O.,Theory of graphs. Amer. Math. Soc. Colloq. Publ., Vol. 38. Providence, R.I., 1962. · Zbl 0105.35401
[11] Ore, O.,The four-color problem. Academic Press, New York, 1967. · Zbl 0149.21101
[12] Rosenfeld, M. andBarnette, D.,Hamiltonian circuits in certain prisms. Discrete Math.5 (1973), 389–394. · Zbl 0269.05114
[13] Tutte, W. T.,A theorem on planar graphs. Trans. Amer. Math. Soc.82 (1956), 99–116. · Zbl 0070.18403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.