×

zbMATH — the first resource for mathematics

Dividing rational points on Abelian varieties of CM-type. (English) Zbl 0331.14020

MSC:
14K22 Complex multiplication and abelian varieties
12G05 Galois cohomology
14G05 Rational points
11J99 Diophantine approximation, transcendental number theory
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] M. Bašmakov : Un théorème de finitude sur la cohomologie des courbes elliptiques . C.R. Acad. Sci. Paris Sér. A -B 270, A999-A1000 (1970). · Zbl 0194.52303
[2] M Bašmakov : The cohomology of abelian varieties over a number field . Russian Math. Surveys 27 (6) (1972) 25-70. · Zbl 0271.14010 · doi:10.1070/rm1972v027n06ABEH001392
[3] J. Coates : An application of the division theory of elliptic functions to diophantine approximation . Inventiones math. 11 (1970) 167-182. · Zbl 0216.04403 · doi:10.1007/BF01404611 · eudml:142051
[4] J. Coates and S. Lang : Diophantine approximation on abelian varieties with complex multiplication . (To appear). · Zbl 0342.10018 · doi:10.1007/BF01425479 · eudml:142392
[5] J-P. Serre : Abelian l-adic representations and elliptic curves . New York: Benjamin 1968. · Zbl 0186.25701
[6] J-P. Serre and J. Tate : Good reduction of abelian varieties . Ann of Math. 88 (1968) 492-517. · Zbl 0172.46101 · doi:10.2307/1970722
[7] G. Shimura : On canonical models of arithmetic quotients of bounded symmetric domains . Ann. of Math. 91 (1970) 144-222. · Zbl 0237.14009 · doi:10.2307/1970604 · www.jstor.org
[8] G. Shimura and Y. Taniyama : Complex multiplication of abelian varieties and its applications to number theory . Publ. Math. Soc. Japan 6 (1961). · Zbl 0112.03502
[9] J. Tate : Endomorphisms of abelian varieties over finite fields . Inventiones Math. 2 (1966) 134-144. · Zbl 0147.20303 · doi:10.1007/BF01404549 · eudml:141848
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.