×

Free topological groups and dimension. (English) Zbl 0331.54026


MSC:

54F45 Dimension theory in general topology
22A05 Structure of general topological groups
54E45 Compact (locally compact) metric spaces
20E05 Free nonabelian groups
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Herbert Abels, Normen auf freien topologischen Gruppen, Math. Z. 129 (1972), 25 – 42 (German). · Zbl 0232.22005
[2] Paul Alexandroff, Darstellung der Grundzüge der Urysohnschen Dimensionstheorie, Math. Ann. 98 (1928), no. 1, 31 – 63 (German). · JFM 53.0558.02
[3] A. V. Arhangel\(^{\prime}\)skiĭ, Mappings connected with topological groups, Dokl. Akad. Nauk SSSR 181 (1968), 1303 – 1306 (Russian).
[4] R. M. Dudley, Continuity of homomorphisms, Duke Math. J. 28 (1961), 587 – 594. · Zbl 0103.01702
[5] James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. · Zbl 0144.21501
[6] M. I. Graev, Free topological groups, Izvestiya Akad. Nauk SSSR. Ser. Mat. 12 (1948), 279 – 324 (Russian).
[7] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. · Zbl 0416.43001
[8] Shizuo Kakutani, Free topological groups and infinite direct product topological groups, Proc. Imp. Acad. Tokyo 20 (1944), 595 – 598. · Zbl 0063.03105
[9] John L. Kelley, General topology, D. Van Nostrand Company, Inc., Toronto-New York-London, 1955. · Zbl 0066.16604
[10] A. A. Markov, On free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 9 (1945), 3-64; English transl., Amer. Math. Soc. Transl. (1) 8 (1962), 195-272. MR 7, 7. · Zbl 0061.04210
[11] A. Miščenko, On the dimension of groups with left-invariant topologies, Dokl. Akad. Nauk SSSR 159 (1964), 753 – 754 (Russian).
[12] Sidney A. Morris, Varieties of topological groups, Bull. Austral. Math. Soc. 1 (1969), 145 – 160. , https://doi.org/10.1017/S0004972700041393 Sidney A. Morris, Varieties of topological groups. II, Bull. Austral. Math. Soc. 2 (1970), 1 – 13. , https://doi.org/10.1017/S0004972700041563 Sidney A. Morris, Varieties of topological groups. III, Bull. Austral. Math. Soc. 2 (1970), 165 – 178. · Zbl 0186.32901
[13] Sidney A. Morris, Varieties of topological groups, Bull. Austral. Math. Soc. 1 (1969), 145 – 160. , https://doi.org/10.1017/S0004972700041393 Sidney A. Morris, Varieties of topological groups. II, Bull. Austral. Math. Soc. 2 (1970), 1 – 13. , https://doi.org/10.1017/S0004972700041563 Sidney A. Morris, Varieties of topological groups. III, Bull. Austral. Math. Soc. 2 (1970), 165 – 178. · Zbl 0186.32901
[14] Sidney A. Morris, Varieties of topological groups, Bull. Austral. Math. Soc. 1 (1969), 145 – 160. , https://doi.org/10.1017/S0004972700041393 Sidney A. Morris, Varieties of topological groups. II, Bull. Austral. Math. Soc. 2 (1970), 1 – 13. , https://doi.org/10.1017/S0004972700041563 Sidney A. Morris, Varieties of topological groups. III, Bull. Austral. Math. Soc. 2 (1970), 165 – 178. · Zbl 0186.32901
[15] J. Nagata, Modern dimension theory, Bibliotheca Math., vol. 6, Interscience, New York, 1965. MR 34 #8380. · Zbl 0129.38304
[16] Tadasi Nakayama, Note on free topological groups, Proc. Imp. Acad. Tokyo 19 (1943), 471 – 475. · Zbl 0063.05899
[17] L. S. Pontriaguin, Continuous groups, Editorial Mir, Moscow, 1978 (Spanish). Translated from the third Russian edition by Carlos Vega.
[18] P. Samuel, On universal mappings and free topological groups, Bull. Amer. Math. Soc. 54 (1948), 591 – 598. · Zbl 0031.41702
[19] N. E. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133 – 152. · Zbl 0145.43002
[20] Barbara V. Smith Thomas, Free topological groups, General Topology and Appl. 4 (1974), 51 – 72. · Zbl 0276.54044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.