×

zbMATH — the first resource for mathematics

Lagrangian and Legendrian singularities. (English. Russian original) Zbl 0331.58007
Funct. Anal. Appl. 10, 23-31 (1976); translation from Funkts. Anal. Prilozh. 10, No. 1, 26-36 (1976).

MSC:
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
58D05 Groups of diffeomorphisms and homeomorphisms as manifolds
58A05 Differentiable manifolds, foundations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Guckenheimer, ”Catastrophes and partial differential equations,” Ann. Inst. Fourier,23, No. 2, 31-59 (1973). · Zbl 0271.35006
[2] V. I. Arnol’d, ”Normal forms of functions near degenerate critical points, the Weyl groups of Ak, Dk, Ek, and Lagrangian singularities,” Funktsional’. Analiz i Ego Prilozhen.,6, No. 4, 3-25 (1972).
[3] L. Hörmander, ”Fourier integral operators. I,” Acta Math.,127, 79-183 (1971). · Zbl 0212.46601
[4] V. I. Arnol’d, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1974).
[5] V. M. Zakalyukin, ”The versality theorem,” Funktsional’. Analiz i Ego Prilozhen.,7, No. 2, 28-31 (1973).
[6] D. Mazer, ”Stability of C? mappings. III,” Matematika,14, No. 1, 145-175 (1970).
[7] F. Latur, ”Stabilité des champs d’applications differentiables,” C. R. Acad. Sci. (Paris),268, 1331-1334 (1969).
[8] V. I. Arnol’d, ”Classification of unimodal critical points of functions,” Funktsional’. Analiz i Ego Prilozhen.,7, No. 3, 75-77 (1973).
[9] V. I. Arnol’d, ”Classification of bimodal critical points of functions,” Funktsional’. Analiz i Ego Prilozhen.,9, No. 1, 49-51 (1975).
[10] A. Weinstein, ”Lagrangian manifolds,” Adv. Math.,6, 347-410 (1971). · Zbl 0213.48203
[11] J. Guckenheimer, ”Caustics and nondegenerate Hamiltonians,” Topology,13, 127-133 (1974). · Zbl 0291.58010
[12] A. Weinstein, ”Lagrangian submanifolds and Hamiltonian systems,” Ann. Math.,98, 377-410 (1973). · Zbl 0271.58008
[13] K. Jänich, ”Caustics and catastrophes,” Math. Ann.,209, 161-180 (1974). · Zbl 0275.58005
[14] M. Golubitsky, Contact Equivalence for Lagrangian Manifolds, Lecture Notes in Math., No. 468 (1975), pp. 71-73. · Zbl 0295.57018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.