Über die punktweise Konvergenz finiter Elemente. (German) Zbl 0331.65073


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
Full Text: DOI EuDML


[1] Aziz, A. K., Babuska, I.: Survey Lectures on the Mathematical Foundations of the Finite Element Method. In: Aziz, A. K. (Editor). The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations. Academic Press 1972
[2] Bramble, J. H., Hilbert, S. R.: Bounds for a Class of Linear Functionals with Application to Hermite Interpolation. Numer. Math.16, 362-369 (1971) · Zbl 0214.41405
[3] Ciarlet, P. G., Raviart, P.-A.: Maximum Principle and Uniform Convergence for the Finite Element Method. Comp. Meth. Appl. Mech. Eng.2, 17-31 (1973) · Zbl 0251.65069
[4] Morrey, B. M.: Multiple Integrals in the Calculus of Variations. Springer 1966 · Zbl 0142.38701
[5] Nevas, I.: Les méthodes directes en théorie des equation elliptiques. Masson 1967
[6] Nitsche, J. A.: Linear Spline-Functionen und die Methoden von Ritz für elliptische Randwertprobleme. Arch. Rational Mech. Anal.36, 348-355 (1970) · Zbl 0192.44503
[7] Strang, G., Fix, G. J.: An Analysis of the Finite Element Method. Prentice-Hall Inc. 1973 · Zbl 0356.65096
[8] Stummel, F.: Diskrete Konvergenz linearer Operatoren I. Math. Ann.190, 45-92 (1970) · Zbl 0203.45301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.