×

zbMATH — the first resource for mathematics

W-isomorphisms of distributive lattices. (English) Zbl 0332.06009

MSC:
06D05 Structure and representation theory of distributive lattices
06E05 Structure theory of Boolean algebras
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] J. Dudek E. Plonka: Weak automorphisms of linear spaces and of some other abstract algebras. Coll. Math. 22 (1971), 201-208. · Zbl 0335.08009
[2] A. Goetz: On weak automorphisms and weak homomorphisms of abstract algebras. Coll. Math. 14 (1966), 163-167. · Zbl 0192.09504
[3] A. Goetz: On various Boolean structures in a given Boolean algebra. Publ. Mathem. 18 (1971), 103-108. · Zbl 0253.06010
[4] J. Jakubík M. Kolibiar: O nekotorych svojstvach par struktur. Czechoslov. Math. J. 4 (1954), 1-27.
[5] J. Jakubík: Pairs of lattices with common congruence relations. · Zbl 0372.06010
[6] E. Marczewski: A general scheme of the notion of independence in mathematics. Bull. Acad. Polon. Sci. Sér. Math. Phys. Astron. 6 (1958), 731 - 736. · Zbl 0088.03001
[7] E. Marczewski: Independence in abstract algebras. Results and problems. Colloq. Math. 14 (1966), 169-188. · Zbl 0192.09502
[8] R. Senft: On weak automorphisms of universal algebras. Dissertationes Math. 74 (1970). · Zbl 0231.08006
[9] J. Sichler: Weak automorphisms of universal algebras. Alg. Univ. 3 (1973), 1 - 7. · Zbl 0273.08008
[10] T. Traczyk: Weak isomorphisms of Boolean and Post algebras. Coll. Math. 13 (1965), 159-164. · Zbl 0133.24404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.