Some properties of stable rank-2 vector bundles on \(\mathbb{P}_n\). (English) Zbl 0332.32021


32L05 Holomorphic bundles and generalizations
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14M15 Grassmannians, Schubert varieties, flag manifolds
Full Text: DOI EuDML


[1] Brieskorn, E.: Über holomorpheP n -Bündel überP 1. Math. Ann.157, 343-357 (1965) · Zbl 0128.17003
[2] Grauert, H., Mülich, G.: Vektorbündel vom Rang 2 über demn-dimensionalen komplex-projektiven Raum. Manuscr. math.16, 75-100 (1975) · Zbl 0318.32027
[3] Grothendieck, A.: Sur la classification des fibrés holomorphes sur la sphère de Riemann. Amer. J. Math.79, 121-138 (1956) · Zbl 0079.17001
[4] Hirzebruch, F.: Topological methods in algebraic geometry. Gundl. Math. Wissensch. Band 131. Third edition. Berlin, Heidelberg, New York: Springer 1966 · Zbl 0138.42001
[5] Horrocks, G.: Vector bundles on the punctured spectrum of a local ring. Proc. London Math. Soc.14, 689-713 (1964) · Zbl 0126.16801
[6] Jessop, C.M.: A treatise on the line complex. Cambridge: Cambridge University Press 1903 · JFM 34.0702.06
[7] Langton, S.G.: Valuation criteria for families of vector bundles on algebraic varietes. Ann. of Math.101, 88-110 (1975) · Zbl 0307.14007
[8] Maruyama, M.: On a family of algebraic vector bundles. Akizuki volume. Kinokuniya, Tokio 95-146 (1973)
[9] Maruyama, M.: Stable vector bundles on an algebraic surface. Nagoya Math. J.58, 25-68 (1975) · Zbl 0337.14026
[10] Riemenschneider, O.: Über die Anwendung algebraischer Methoden in der Deformationstheorie komplexer Räume. Math. Ann.187, 40-55 (1970) · Zbl 0196.09701
[11] Schwarzenberger, R.L.E.: Vector bundles on algebraic surfaces. Proc. London Math. Soc.11, 601-622 (1961) · Zbl 0212.26003
[12] Schwarzenberger, R.L.E.: Vector bundles on the projective plane. Proc. London Math. Soc.11, 623-640 (1961) · Zbl 0212.26004
[13] Takemoto, F.: Stable vector bundles on algebraic surfaces. Nagoya Math. J.47, 29-48 (1972) · Zbl 0245.14007
[14] Van de Ven, A.: On uniform vector bundles. Math. Ann.195, 245-248 (1972) · Zbl 0215.43202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.