Interpolation in a Banach space. (English) Zbl 0332.41024


41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
41A05 Interpolation in approximation theory
Full Text: DOI EuDML


[1] Aubin J. P.: Interpolation et approximation optimales et ”spline functions”. J. Math. Anal. Appl. 24 (1968), 1-24. · Zbl 0188.43702 · doi:10.1016/0022-247X(68)90046-2
[2] Banach S.: Théorie des opérations linéaires. Warszawa 1932. · Zbl 0005.20901
[3] Day M. M.: Normed linear spaces. Springer 1958. · Zbl 0082.10603
[4] Garkavi A. L.: On the best net and the best section of a set in a normed linear space. (in Russian), Izv. Akad. Nauk SSSR, ser. mat. 26 (1962), 87-106. · Zbl 0108.10801
[5] Kolmogorov A. N.: Über die beste Annäherung von Funktionen einer gegeben Funktionenklasse. Ann. of Math. 37 (1936), 107-110. · Zbl 0013.34903 · doi:10.2307/1968691
[6] Lorentz G. G.: Approximations of functions. Holt, Rinehart and Winston 1966. · Zbl 0153.38901
[7] Murray F. J.: On complementary manifolds and projections in spaces \(L_ p\) and \(l_ p\). Trans. Amer. Math. Soc. 41 (1937), 138-152.
[8] Singer I.: Quelques applications d’un dual du Théorème de Hahn-Banach. C.R. Acad. Sci. (Paris) 247 (1958), 846-849. · Zbl 0082.10904
[9] Tihomirov V. M.: Widths of sets in functional spaces and the theory of best approximations. (in Russian), Uspehi mat. nauk 15 (1960), No 3, 81 - 120.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.