×

Zeta-function of monodromy and Newton’s diagram. (English) Zbl 0333.14007


MSC:

14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
32B10 Germs of analytic sets, local parametrization
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Milnor, J.: Singular points of complex hypersurfaces. Princeton: University Press 1968 · Zbl 0184.48405
[2] Kouchnirenko, A. G.: Mnogogrannik Nyutona i chisla Milnora. Funkcional. Anal. i Prilo?en.9(1), 74-75 (1975)
[3] Kouchnirenko, A. G.: Polyèdres de Newton et nombres de Milnor. Inventiones math.,32, 1-31 (1976) · Zbl 0328.32007 · doi:10.1007/BF01389769
[4] Arnold, V. I.: Kriticheskie tochki gladkikh funktsiî ikh normalnye formy. Uspehi Mat. Nauk30(5), 3-65 (1975)
[5] A’Campo, N.: La fonction zeta d’une monodromie. Comment Math. Helv.50(2), 233-248 (1975) · Zbl 0333.14008 · doi:10.1007/BF02565748
[6] Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B.: Toroidal embeddings. Lecture Notes in Math. Berlin-Heidelberg-New York: 1973 · Zbl 0271.14017
[7] Bernshtein, D. N.: Chislo resheniî sistemy uravneniî. Funkcional. Anal. i Prilo?en.9(3), 1-4(1975) · Zbl 0395.60076 · doi:10.1007/BF01078167
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.