zbMATH — the first resource for mathematics

Some characterizations of Bruhat ordering on a Coxeter group and determination of the relation Möbius function. (English) Zbl 0333.20041

20H15 Other geometric groups, including crystallographic groups
06F15 Ordered groups
Full Text: DOI EuDML
[1] Bernstein, I. N., Gelfand, I. M., Gelfand, S. I.: Differential operators on the base affine space and a study ofg-modules, Lie groups and their representation. Summer School of Bolyai János Math. Soc., I. M. Gelfand, ed., pp. 21?64. New York: Halsted Press 1975 · Zbl 0338.58019
[2] Borel, A., Tits, J.: Compléments a l’article ?Groupes Reductifs?. Publ. Math. I.H.E.S.41, 253?276 (1972) · Zbl 0254.14018
[3] Bourbaki, N.: Groupes et Algebres de Lie. Chapitre 4, 5 et 6. Paris: Hermann 1968 · Zbl 0186.33001
[4] Rota, G. C.: On the foundations of combinatorial theory; I. Theory of Mobius functions. Z. Wahrscheinlichkeitstheorie verw. Gebiete Vol.2, 340?368 (1964) · Zbl 0121.02406
[5] Steinberg, R.: Lecture notes on Chevalley groups, mimeographed notes. Yale University, 1967
[6] Verma, D.-N.: Möbius inversion for the Bruhat ordering on a Weyl group. Ann. scient. Éc. Norm. Sup., 393?399 (1971) · Zbl 0236.20035
[7] Verma, D.-N.: A strengthening of the exchange condition property for Coxeter groups. Preprint 1972
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.