×

zbMATH — the first resource for mathematics

Commutativity of intertwining operators. II. (English) Zbl 0333.22006

MSC:
22E30 Analysis on real and complex Lie groups
22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
43A80 Analysis on other specific Lie groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Harish-Chandra, Harmonic analysis on semisimple Lie groups, Bull. Amer. Math. Soc. 76 (1970), 529 – 551. · Zbl 0212.15101
[2] Harish-Chandra, On the theory of the Eisenstein integral, Conference on Harmonic Analysis (Univ. Maryland, College Park, Md., 1971), Springer, Berlin, 1972, pp. 123 – 149. Lecture Notes in Math., Vol. 266.
[3] A. W. Knapp, Determination of intertwining operators, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I, 1973, pp. 263 – 268.
[4] A. W. Knapp, Commutativity of intertwining operators, Bull. Amer. Math. Soc. 79 (1973), 1016 – 1018. · Zbl 0269.22012
[5] A. W. Knapp, Weyl group of a cuspidal parabolic, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 2, 275 – 294. · Zbl 0305.22010
[6] A. W. Knapp and E. M. Stein, Singular integrals and the principal series. III, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 4622 – 4624. · Zbl 0293.22026
[7] A. W. Knapp and E. M. Stein, Singular integrals and the principal series. IV, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), 2459 – 2461. · Zbl 0293.22027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.