×

zbMATH — the first resource for mathematics

Prolongement des fonctions holomorphes bornees et métrique de Caratheodory. (French) Zbl 0333.32011

MSC:
32D05 Domains of holomorphy
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Arenson, E. L.: Gleason parts and the Wermer-Hoffman theorem on characterization ofC(X). Sibirskii Math. Z.13, 1203-1212 (1972) · Zbl 0249.46029
[2] Barth, T. J.: The Kobayashi distance induces the standard topology. Proc. Amer. Math. Soc.35, 439-441 (1972) · Zbl 0259.32007
[3] Brelot, M., Choquet, G.: Le théorème de convergence en théorie du potentiel. J. Madras Univ.27, 277-286 (1957) · Zbl 0086.30501
[4] Bremmermann, M. F.: Die Charakterisierung Rungescher Gebiete durch plurisubharmonische Funktionen. Math. Ann.136, 173-186 (1958) · Zbl 0089.05902
[5] Browder, A.: Introduction to function algebras. New York: W. A. Benjamin Inc. 1969 · Zbl 0199.46103
[6] Cnop, I.: Spectral study of holomorphic functions with bounded growth. Ann. Inst. Fourier22, 293-310 (1972) · Zbl 0226.46029
[7] Ferrier, J.-P.: Spectral theory and complex analysis. Amsterdam: North-Holland Publ. Co. 1973 · Zbl 0261.46051
[8] Fuks, B. A.: Special chapter in the theory of analytic function of several complex variables. Transl. Math. Monographs14 (1965) · Zbl 0146.30802
[9] Function Algebras Proc. Int. Symp. Tulane Univ. (1965). Chicago: Scott, Foresman, 1966
[10] Gamelin, T., Garnett, J.: Distinguished homomorphisms and fiber algebras. Amer. J. Math.92, 455-474 (1970) · Zbl 0212.15302
[11] Gunning, R. C., Rossi, H.: Analytic functions of several complex variables. Englewood Cliffs, N.J.: Prentice-Hall 1965 · Zbl 0141.08601
[12] Hironaka, H., Rossi, H.: On the equivalence of embeddings of exceptional complex spaces. Math. Ann.156, 313-333 (1964) · Zbl 0136.20801
[13] Hormander, L.: An introduction to complex analysis in several variables. New York: Van Nostrand Co. 1966
[14] Kaneyuki, S.: Homogeneous bounded domains and Siegel domains. Lecture Notes in Mathematics241. Berlin-Heidelberg-New York: Springer 1971 · Zbl 0241.32011
[15] Kobayashi, S.: Hyperbolic manifolds and holomorphic mappings. New York: M. Dekker Inc. 1970 · Zbl 0207.37902
[16] Kwak, M. H.: Mapping into hyperbolic spaces. Bull. Amer. Math. Soc.79, 695-697 (1973) · Zbl 0269.32012
[17] Lelong, P.: Fonctionnelles analytiques et fonctions entières (n variables). Montréal, Presses de l’Univ. (1968) · Zbl 0194.38801
[18] Narashiman, R.: Introduction to the theory of analytic spaces. Lecture Notes in Mathematics25. Berlin-Heidelberg-New York: Springer 1966
[19] Narashiman, R.: Several complex variables. Lectures in Math. Chicago: The Univ. Chicago Press 1971
[20] Piatetsky-Shapiro, I. I.: Géométrie des domaines classiques et fonctions automorphes. Paris: Dunod 1966
[21] Reiffen, H. J.: Die caratheodorysche Distanz und ihre zugehörige Differentialmetrik. Math. Ann.161, 315-324 (1965) · Zbl 0141.08803
[22] Rossi, H.: Holomorphically convex sets in several complex variables. Ann. Math.74, 470-473 (1968) · Zbl 0107.28601
[23] Shiffmann, B.: On the removal of singularities of analytic sets. Michigan Math. J.15, 11-120 (1968)
[24] Sibony, N.: Prolongement analytique des fonctions holomorphes bornées. C.R. Acad. Sc. Paris275, 973-976 (1972) · Zbl 0246.32015
[25] Sibony, N.: Approximation polynomiale pondérée dans un domaine d’holomorphie deC n. A paraitre aux Ann. Inst. Fourier · Zbl 0324.32014
[26] Stein, E. M.: Boundary behavior of holomorphic functions of several complex variables. Math. Notes, Princeton Univ. Press 1972 · Zbl 0242.32005
[27] Stout, E. L.: The theory of uniform algebras. New York: Bogden and Quigley In. Publ. 1971 · Zbl 0286.46049
[28] Zalcman, L.: Bounded analytic functions on domains of infinite connectivity. Transl. Amer. Math. Soc.144, 241-269 (1969) · Zbl 0188.45002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.