zbMATH — the first resource for mathematics

Mean value theorem and a maximum principle for Kolmogorov’s equation. (English. Russian original) Zbl 0333.35040
Math. Notes 15, 280-286 (1974); translation from Mat. Zametki 15, 479-489 (1974).

35K10 Second-order parabolic equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35E05 Fundamental solutions to PDEs and systems of PDEs with constant coefficients
Full Text: DOI
[1] A. N. Kolmogorov, ?Zufallige Bewegungen,? Ann. of Math.,2, No. 35, 116-117 (1934). · Zbl 0008.39906 · doi:10.2307/1968123
[2] B. Pini, ?Maggioranti e minoranti delle soluzioni delle equazioni paraboliche,? Ann. Mat. Pura Appl., 37, 249-264 (1954). · Zbl 0057.32703 · doi:10.1007/BF02415101
[3] W. Fulks, ?A mean value theorem for the heat equation,? Proc. Amer. Math. Soc.,17, No. 1, 6-11 (1966). · Zbl 0152.10503 · doi:10.1090/S0002-9939-1966-0192200-3
[4] L. Nirenberg, ?A strong maximum principle for parabolic equations,? Comm. Pure Appl. Math.,6, 167-177 (1953). · Zbl 0050.09601 · doi:10.1002/cpa.3160060202
[5] M. Weber, ?The fundamental solutions of a degenerate partial differential equation of parabolic type,? Trans. Amer. Math. Soc.,71, 24-37 (1951). · Zbl 0043.09901 · doi:10.1090/S0002-9947-1951-0042035-0
[6] A. M. Il’in, ?On a class of ultraparabolic equations,? Dokl. Akad. Nauk SSSR,159, 1214-1217 (1964).
[7] L. Hörmander, ?Hypoelliptic differential equations of the second order,? Acta Math.,119, 147-171 (1967). · Zbl 0156.10701 · doi:10.1007/BF02392081
[8] P. R. Halmos, Finite Dimensional Vector Spaces, Annals of Math. Studies, Vol. No. 7, Princeton Univ. Press, Princeton (1942). · Zbl 0107.01404
[9] Ya. I. Shatyro, ?On the smoothness of the solutions of some degenerate second-order equations,? Matem. Zametki,10, No. 1, 101-111 (1971).
[10] L. P. Kuptsov, ?On the fundamental solutions of a class of second-order elliptic-parabolic equations,? Differents. Uravnen.,8, No. 9, 1649-1660 (1972).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.