zbMATH — the first resource for mathematics

Curved finite element methods for the solution of singular integral equations on surfaces in \(R^3\). (English) Zbl 0333.45015

45L05 Theoretical approximation of solutions to integral equations
65R20 Numerical methods for integral equations
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65N99 Numerical methods for partial differential equations, boundary value problems
Full Text: DOI
[1] Nedelec, J.C; Planchard, J, Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans R3, R.a.i.r.o., 7, 105-129, (1973), R3 · Zbl 0277.65074
[2] Lions, J.L; Magenes, E, Problèmes aux limites non homogènes, (1968), Dunod Paris · Zbl 0165.10801
[3] Ciarlet, P.G; Raviart, P.A, General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch. rat. mech. anal., 46, 177-199, (1972) · Zbl 0243.41004
[4] Stroud, A.H, Approximate calculation of multiple integrals, (1972), Prentice Hall · Zbl 0379.65013
[5] Butzer, P.L; Berens, H, Semi-groups of operators and approximations, (1967), Springer Berlin · Zbl 0164.43702
[6] Seeley, R, Cours C.I.M.E., stresa, 1968, (1969), Cremonese Rome
[7] Leroux, M.N, Equations intégrales pour le problème du potentiel électrique dans le plan, C.R.A.S., Paris (sér. math. A), 278, 541-544, (1974) · Zbl 0283.45006
[8] Leroux, M.N, Résolution numérique du problème du potentiel dans le plan par une méthode variationnelle d’éléments finis, Thèse de 3ème cycle, univ. Rennes, (1974)
[9] Djaoua, M, Méthode d’éléments finis pour la résolution d’un problème extérieur dans R3, rapport interne du centre de mathématiques appliquées de l’ecole polytechnique, no 3, (1975)
[10] Rizzo, J.F, An integral equation approach to boundary value problems of classical elasto-plastics, Quarterly of applied mathematics, 25, 83, (1967) · Zbl 0158.43406
[11] Cruse, T.A, Application of the boundary integral equation method to three-dimensional stress analysis, Comp. struct., 3, 309, (1973)
[12] Lachat, J.L, Application de la méthode des éléments finis à l’élasticité plane et aux corps de révolution, ()
[13] Hess, J.L; Smith, A.M.O, Calculation of nonlifting potential flow about arbitrary three-dimensional bodies, J. ship res., 8, 22-44, (1964)
[14] Hess, J.L, Review of integral equation techniques for solving potential flow problems with emphasis on the surface source method, Comp. meths. appl. mech. eng., 5, 145-196, (1975) · Zbl 0299.76011
[15] Hess, J.L, Improved solution for potential flow about arbitrary axisymmetric bodies by the use of a higher-order surface source method, Comp. meths. appl. mech. eng., 5, 297-308, (1975) · Zbl 0298.76008
[16] G.C. Hsiao and W. Wendland, A finite element method for some integral equations of the first kind, to appear in J.M.A.A. · Zbl 0352.45016
[17] Argyris, J.H, Energy theorems and structural analysis, (1971), Butterworth London
[18] Ciarlet, P.G; Raviart, P.A, Interpolation theory over curved elements with applications to finite element methods, Comp. meths. appl. mech. eng., 1, 217-249, (1972) · Zbl 0261.65079
[19] Ciarlet, P.G, La méthode des éléments finis appliquée aux coques, ()
[20] Dubois, M; Lachat, J.C, The integral formulation of boundary value problems, (), 989 · Zbl 0317.73015
[21] Hanouzet, B, Espace de Sobolev avec poids. application au problème de Dirichlet dans un demi-espace, Rend. semin. math. univ. Padova, 46, 247-272, (1971) · Zbl 0247.35041
[22] Hormander, Linear partial differential operators, (1963), Springer Berlin · Zbl 0108.09301
[23] Kupradze, V.D, Potential methods in the theory of elasticity, (1965), Darvey · Zbl 0188.56901
[24] Lelong, J; Ferrand, M, Géométrie différentielle, (1963), Masson Paris · Zbl 0111.34302
[25] Mikhlin, S.G, Linear integral equations, (1960), Gordon and Breach New York · Zbl 0142.39201
[26] Zienkiewicz, O.C, The finite element method in engineering science, (1971), McGraw-Hill London · Zbl 0237.73071
[27] Lachat, J.L; Watson, J.O, A second generation boundary integral equation program of the three-dimensional elastic analysis, C.e.t.i.m., (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.