×

zbMATH — the first resource for mathematics

Characterization of \(c_0\) and \(\ell_p\) among Banach spaces with symmetric basis. (English) Zbl 0333.46009

MSC:
46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces
46A45 Sequence spaces (including Köthe sequence spaces)
PDF BibTeX Cite
Full Text: DOI
References:
[1] Z. Altshuler, P. G. Casazza and Bor Luh Lin,On symmetric basic sequences in Lorentz sequence spaces, Israel J. Math.15 (1973), 140–155. · Zbl 0264.46011
[2] P. G. Casazza and Bor Luh Lin,On symmetric basic sequences in Lorentz sequence spaces II, Israel J. Math.17 (1974), 191–217. · Zbl 0286.46019
[3] J. Lindenstrauss and L. Tzafriri,On the complemented subspaces problem, Israel J. Math.9 (1971), 263–269. · Zbl 0211.16301
[4] J. Lindenstrauss and L. Tzafriri,Classical Banach spaces, Springer-Verlag Lecture Notes, No. 338, 1973. · Zbl 0259.46011
[5] M. Zippin,On perfectly homogeneous bases in Banach spaces, Israel J. Math.4 (1966), 265–275. · Zbl 0148.11202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.