×

Optimization of linear systems with input time-delay. (English) Zbl 0333.49036


MSC:

49M05 Numerical methods based on necessary conditions
93C05 Linear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations
PDFBibTeX XMLCite
Full Text: EuDML

References:

[1] G. L. Kharatishvili: The maximum principle in the theory of optimal processes with time-lags. Dokl. Akad. Nauk USSR 136 (1961), 39-43.
[2] D. H. Eller J. K. Aggarwal H. T. Banks: Optimal control of linear time-delay systems. IEEE Trans. AC AC-14 (1969), 678-687.
[3] N. N. Krasovskii: Optimal Processes in systems with time-lags. Proc. 2nd IFAC Congress, Basel, Switzerland (1963), 327-332.
[4] J. K. Aggarwal: Computation of optimal control for time-delay systems. IEEE Trans. AC AC-15 (Dec. 1970), 683-685.
[5] K. Inoue H. Akashi K. Ogino Y. Sawaragi: Sensitivity approaches to optimisation of linear systems with time delay. Automatica 7 (1971), 671-679. · Zbl 0225.49009 · doi:10.1016/0005-1098(71)90006-9
[6] M. Jamshidi M. Malek-Zaverei: Suboptimal design of linear control systems with time delay. Proc. IEE 119 (1972), 1743-1746.
[7] H. C. Chan W. R. Perkins: Optimization of time delay systems using parameter imbedding. IFAC Automatica 9 (1973), 257-261. · Zbl 0248.49021 · doi:10.1016/0005-1098(73)90080-0
[8] M. Jamshidi: A Three stage design of Nonlinear control systems with time-delay. Int. J. Control 21 (1975), 753-762. · Zbl 0303.49016 · doi:10.1080/00207177508922029
[9] R. Bate: The optimal control of systems with time lags. Advances in Control Systems 7 (C. T. Leondes, Academic Press, New York 1969, 177-224.
[10] M. Jamshidi: Suboptimal control of coupled time delay systems. Int. J. Control 17 (1973), 995-1008. · Zbl 0254.49014 · doi:10.1080/00207177308932443
[11] R. E. Kalman: Contribution to the theory of optimal control. Bol. Soc. Mat. Mexicana (1960), 102-119.
[12] M. Razzaghi J. O. Flower: On the solution of the Matrix Riccati Equation. To appear.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.