×

zbMATH — the first resource for mathematics

Processus de Harris abstraits. (French) Zbl 0333.60071

MSC:
60J35 Transition functions, generators and resolvents
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] A. Brunel , Chaînes abstraites de Markov vérifiant une condition d’Orey . Wahrscheinlichkeitstheorie , 19 , 1971 . MR 317410 | Zbl 0203.50305 · Zbl 0203.50305 · doi:10.1007/BF00535837
[2] A. Brunel , Thèse , Paris , 1966 . · Zbl 0141.32002
[3] A. Brunel , New conditions for existence of invariant measures in ergodic theory . Lectures Notes , p. 160 , 1970 . MR 268355 | Zbl 0211.20501 · Zbl 0211.20501
[4] P. Crepel , Fonctions spéciales pour des contractions de L1 . Astérisque , ( 4 ), 1973 . Zbl 0267.60072 · Zbl 0267.60072
[5] S. Foguel , The ergodic theory of Markov process . Van Nostrand , 1969 . MR 261686 | Zbl 0282.60037 · Zbl 0282.60037
[6] S. Horowitz , Transition probabilities and contractions of L\infty . Wahrscheinlichkeitstheorie , 24 , 1972 . MR 331516 | Zbl 0228.60028 · Zbl 0228.60028 · doi:10.1007/BF00679131
[7] S. Foguel , Ratio limit theorems for Markov process . Israel Journal of Mathematics , 7 , 1969 . MR 260017 | Zbl 0235.60069 · Zbl 0235.60069 · doi:10.1007/BF02788871
[8] M. Lin , Mixed Ratio limit theorems for Markov processes . Israel Journal of Mathematics , 8 , 1970 . MR 272056 | Zbl 0205.45401 · Zbl 0205.45401 · doi:10.1007/BF02798682
[9] M. Metivier , Existence of an invariant measure and an Ornestein’s ergodic theorem . Annales of mathematical statistics , 40 , 1969 . Article | MR 242246 | Zbl 0214.17102 · Zbl 0214.17102 · doi:10.1214/aoms/1177697806 · minidml.mathdoc.fr
[10] J. Neveu , Potentiel markovien récurrent des chaînes de Harris . Annales de l’Institut de Fourier , tome 22 , fascicule 2 , 1972 . Numdam | MR 380992 | Zbl 0226.60084 · Zbl 0226.60084 · doi:10.5802/aif.414 · numdam:AIF_1972__22_2_85_0 · eudml:74085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.