Sur la transformation de Fourier-Laurent dans un groupe analytique complexe réductif. (French) Zbl 0334.32028


32M05 Complex Lie groups, group actions on complex spaces
32D10 Envelopes of holomorphy
32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010)
32E05 Holomorphically convex complex spaces, reduction theory
Full Text: DOI Numdam EuDML


[1] B. BEERS and A. DRAGT, New theorems about spherical harmonics expansions and SU(2), J. Math. Phys., 11 (1970), 2313-2328. · Zbl 0198.47701
[2] A. CEREZO, Solutions analytiques des équations invariantes sur un groupe compact ou complexe réductif, Ann. Inst. Fourier, 25 (1975), 249-277. · Zbl 0302.43016
[3] J. DIEUDONNE, Eléments d’analyse, Tome 5, Gauthier-Villars, Paris (1975). · Zbl 0326.22001
[4] F. DOCQUIER und H. GRAUERT, Levisches problem und rungescher satz für teilgebiete steinscher mannigfaltigkeiten, Math. Ann., 140 (1960), 94-123. · Zbl 0095.28004
[5] L. FROTA-MATTOS, Analytic continuation of the Fourier series on connected compact Lie groups, thèse, Rutgers Univ. (1975).
[6] S. HELGASON, Differential geometry and symmetric spaces, Academic Press, New-York (1962). · Zbl 0111.18101
[7] G. HOCHSCHILD, La structure des groupes de Lie, Dunod, Paris (1968). · Zbl 0157.36502
[8] G. MOSTOW, A new proof of E. Cartan’s theorem on the topology of semi-simple Lie groups, Bull. Amer. Math. Soc., 55 (1949), 969-980. · Zbl 0037.01401
[9] O. ROTHAUS, Envelopes of holomorphy of domains in complex Lie groups, in Problems of analysis, 309-317, Princeton Univ. Press (1970). · Zbl 0212.10801
[10] P. SCHAPIRA, Théorie des hyperfonctions, Lecture notes 126, Springer, Berlin (1970). · Zbl 0192.47305
[11] N. WALLACH, Harmonic analysis on homogeneous spaces, Marcel Dekker, New-York (1973). · Zbl 0265.22022
[12] G. WARNER, Harmonic analysis on semi-simple Lie groups, Vol. I, Springer, Berlin (1972). · Zbl 0265.22020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.