×

The truncation method for the solution of a class of variational inequalities. (English) Zbl 0334.49012


MSC:

49K20 Optimality conditions for problems involving partial differential equations
93D99 Stability of control systems
PDFBibTeX XMLCite
Full Text: EuDML

References:

[1] AGMON S., Lectures on elliptic boundary value problems, Princeton : D. Van Nostrand Company, Inc. 1965. Zbl0142.37401 MR178246 · Zbl 0142.37401
[2] BERGER A. E. CIMENT M. and ROGERS J. C. W., Numerical solution of a diffusion consumption problem with a free boundary, SIAM J, Num. Anal. 12, 646-672 (1975). Zbl0317.65032 MR383779 · Zbl 0317.65032 · doi:10.1137/0712049
[3] BRÉZIS H., Problèmes unilatéraux, J. Math. Pures et Appl. 51, 1-168 (1972). Zbl0237.35001 MR428137 · Zbl 0237.35001
[4] DOUGLAS J. Jr., and DUPONT T., Galerkin methods for parabolic equations, SIAM J. Num. Anal. 7, 575-626 (1970). Zbl0224.35048 MR277126 · Zbl 0224.35048 · doi:10.1137/0707048
[5] DUVAUT G. and LIONS, J. L., Les inéquations en mécanique et en physique, Paris : Dunod 1972. Zbl0298.73001 MR464857 · Zbl 0298.73001
[6] FALK R., Error estimates for the approximation of a class of variational inequalities, Math of Comp. 28, 963-971 (1974). Zbl0297.65061 MR391502 · Zbl 0297.65061 · doi:10.2307/2005358
[7] GANTMACHER F. R., The theory of matrices, Vol. 1. New York : Chelsea Publishing Company 1959. Zbl0927.15001 MR107649 · Zbl 0927.15001
[8] HUNT C. and NASSIF N., Inéquations variationnelles et détermination de la charge d’espace de certains semi-conducteurs, C. R. Acad. Se. Paris, A 278, 1409-1412 (1974). Zbl0283.49020 MR343769 · Zbl 0283.49020
[9] ISAACSON E. and KELLER H. B., Analysis of numerical methods, New York : John Wiley & Sons, Inc., 1966. Zbl0168.13101 MR201039 · Zbl 0168.13101
[10] LEWY H. and STAMPACCHIA G., On the regularity of the solution of a variational inequality, Comm. on Pure and Appl, Math. 22, 153-188 (1969). Zbl0167.11501 MR247551 · Zbl 0167.11501 · doi:10.1002/cpa.3160220203
[11] LIONS J. L., Approximation numérique des inéquations d’évolution, Constructive Aspects of Functional Analysis edited by G. Geymonat, II Ciclo 1971-Centro Internazionale Matematico Estivo, Roma (1973). Zbl0299.65054 · Zbl 0299.65054
[12] LIONS J. L. and STAMPACCHIA G., Variational inequalities, Comm. on Pure and Appl. Math. 20, 493-519 (1967). Zbl0152.34601 MR216344 · Zbl 0152.34601 · doi:10.1002/cpa.3160200302
[13] LIONS J L, TREMOLIERES R and GLOWINSKI R, Methodes generales d’approximation des problèmes d’inéquations stationnaires, Institut de Recherche d’Informatique et d’Automatique (March 1971)
[14] LIONS J L, TREMOLIERES R and GLOWINSKI R, Algorithmes d’optimisation, Institut de Recherche d’Informatique et d’Automatique (July 1971)
[15] Mosco U and STRANG G, One-sided approximation and varational inequalities, Bull Amer Math Soc 80,308-312 (1974) Zbl0278.35026 MR331818 · Zbl 0278.35026 · doi:10.1090/S0002-9904-1974-13477-4
[16] RICHTMYER R D and MORTON K WDifférence methods for initial-value problems New York Interscience Publishers, 1967 Zbl0155.47502 MR220455 · Zbl 0155.47502
[17] STRANG G, The finite element method-linear and nonlinear applications, to appear in the Proceedings of the International Congress of Mathematicians, Vancouver, Canada 1974 Zbl0334.65087 MR423842 · Zbl 0334.65087
[18] STRANG G and Fix G, An analysis of the finite element method, Englewood Chffs Prentice-Hall, Inc 1973 Zbl0356.65096 MR443377 · Zbl 0356.65096
[19] STROUD A H and SECREST D, Gaussian quadrature formulas Englewood Cliffs Prentice-Hall, Inc 1966 Zbl0156.17002 MR202312 · Zbl 0156.17002
[20] VARGA R S, Matrix iterative analysis, Englewood Cliffs Prentice-Hall, Inc 1965 Zbl0133.08602 MR158502 · Zbl 0133.08602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.