Smooth compact Lie group actions on disks. (English) Zbl 0334.57023


57S25 Groups acting on specific manifolds
55P15 Classification of homotopy type
Full Text: DOI EuDML


[1] Becker, J., Gottlieb, D.: The transfer map and fiber bundles. Topology14, 1-12 (1975) · Zbl 0306.55017
[2] Boothby, W., Wang, H.-C.: On the finite subgroups of connected Lie groups. Commentarii math. Helvet.39, 281-294 (1964) · Zbl 0138.03001
[3] Conner, P.: Retraction properties of the orbit space of a topological transformation group. Duke math. J.27, 341-357 (1960) · Zbl 0096.02202
[4] tom Dieck, T.: Orbittypen und äquivariante Homologie I. Arch. der Math.23, 307-317 (1972) · Zbl 0252.55003
[5] tom Dieck, T.: The Burnside ring of a compact Lie group I. Math. Ann.215, 235-250 (1975) · Zbl 0313.57030
[6] Illman, S.: Equivariant algebraic topology. Thesis, Princeton University (1972)
[7] Montgomery, D., Zippin, L.: Topological transformation groups. New York-London: Interscience 1955 · Zbl 0068.01904
[8] Nakayama, T.: Modules of trivial cohomology over a finite group II. Nagoya math. J.12, 171-176 (1957) · Zbl 0207.33602
[9] Oliver, R.: Fixed point sets of group actions on finite acyclic complexes. Commentarii math. Helvet. 155-177 (1975) · Zbl 0304.57020
[10] Oliver, R.: Projective obstructions to group actions on disks. Preprint No. 17. Matematisk Institut: Aarhus 1974/75
[11] Rotman, J.: The theory of groups. Allyn and Bacon, 1965 · Zbl 0123.02001
[12] Swan, R.: Induced representations and projective modules. Ann. Math., II. Ser.71, 552-578 (1960) · Zbl 0104.25102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.