×

zbMATH — the first resource for mathematics

Cusp forms of degree 2 and weight 3. (English) Zbl 0335.10030

MSC:
11F27 Theta series; Weil representation; theta correspondences
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Andrianov, A. N., Maloletkin, G. I.: Behaviour of theta series of degreen under modular transformations. Izv. Akad. Nauk SSSR, Ser. Math.39, 243-258 (1975)
[2] Christian, U.: ?ber die Anzahl der Spitzen Siegelscher Modulgruppen. Abh. Math. Sem. Hamburg32, 55-60 (1968) · Zbl 0162.10603 · doi:10.1007/BF02993913
[3] Freitag, E.: Holomorphe Differentialformen zu Kongruenzgruppen der Siegelschen Modulgruppe zweiten Grades. Math. Ann.216, 155-164 (1975) · Zbl 0307.32026 · doi:10.1007/BF01432543
[4] Igusa, J.: On the graded ring of theta-constants. Amer. J. Math.86, 219-246 (1964) · Zbl 0146.31703 · doi:10.2307/2373041
[5] Igusa, J.: On Siegel modular forms of genus two (II). Amer. J. Math.86, 392-412 (1964) · Zbl 0133.33301 · doi:10.2307/2373172
[6] Koecher, M.: Zur Theorie der Modulformenn-ten Grades I, II. Math. Zeit.59, 399-416 (1954), ibid61, 455-466 (1955) · Zbl 0055.07704 · doi:10.1007/BF01180269
[7] Maass, H.: Zur Theorie der harmonischen Formen. Math. Ann.137, 142-149 (1959) · Zbl 0083.06002 · doi:10.1007/BF01343242
[8] Maass, H.: Spherical functions and quadratic forms. J. Ind. Math. Soc.20, 117-162 (1956) · Zbl 0072.08401
[9] Raghavan, S.: Modular forms of degreen and representation by quadratic forms. Ann. Math.70, 446-477 (1959) · Zbl 0093.08002 · doi:10.2307/1970325
[10] Siegel, C. L.: On the theory of indefinite quadratic forms. Ann. Math.45, 577-622 (1944) · Zbl 0063.07006 · doi:10.2307/1969191
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.