zbMATH — the first resource for mathematics

Some examples of orders of global dimension two. (English) Zbl 0335.16010

16H05 Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.)
16E10 Homological dimension in associative algebras
Full Text: DOI EuDML
[1] Auslander, M.: On the Dimension of Modules and Algebras III. Nagoya. Math. J.9, 67-77 (1955) · Zbl 0067.27103
[2] Auslander, M., Goldman, O.: Maximal Orders. Trans. Amer. math. Soc.97, 1-24 (1960) · Zbl 0117.02506 · doi:10.1090/S0002-9947-1960-0117252-7
[3] Auslander, M., Roggenkamp, K. W.: A Characterization of Orders of Finite Lattice Type. Inventiones math.17, 79-84 (1962) · Zbl 0248.12012 · doi:10.1007/BF01390025
[4] Dlab, V., Ringel, C. M.: Indecomposable Representations of Graphs and Algebras. Memoirs Amer. math. Soc.173 (1976) · Zbl 0332.16015
[5] Roggenkamp, K. W., Huber-Dyson, V.: Lattices over Orders I. Lecture Notes in Mathematics115, Berlin-Heidelberg-New York: Springer 1969 · Zbl 0205.33501
[6] Roggenkamp, K. W.: Lattices over Orders II. Lecture Notes in Mathematics142. Berlin-Heidelberg-New York: Springer 1970 · Zbl 0205.33601
[7] Rotman, J.J.: Notes on Homological Algebra. Princeton: Van Nostrand, Math. Studies26 (1970) · Zbl 0222.18003
[8] Tarsy, R.: Global Dimension of Orders. Trans. Amer. math. Soc.151, 335-340 (1970) · Zbl 0221.16003 · doi:10.1090/S0002-9947-1970-0268226-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.