Kucharzewski, M. Über die Grundlagen der Kleinschen Geometrie. (German) Zbl 0335.50001 Period. Math. Hung. 8, 83-89 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 1 Document MSC: 51A25 Algebraization in linear incidence geometry 51-02 Research exposition (monographs, survey articles) pertaining to geometry PDF BibTeX XML Cite \textit{M. Kucharzewski}, Period. Math. Hung. 8, 83--89 (1977; Zbl 0335.50001) Full Text: DOI References: [1] E. J. Jasińska undM. Kucharzewski, Kleinsche Geometrie und Theorie der geometrischen Objekte,Colloq. Math. 26 (1972), 271–279.MR 49 # 3713 · Zbl 0248.53011 [2] E. J. Jasińska undM. Kucharzewski, Grundlegende Begriffe der Kleinschen Geometrie,Demonstratio Math. 7 (1974), 381–402.MR 50 # 14444 [3] M. Kucharzewski, Über die Orientierung der Kleinschen Geometrien,Ann. Polon. Math.,29 (1975), 363–371. · Zbl 0261.50011 [4] R. Sulanke, Zu den Grundlagen der Differentialgeometrie,Wiss. Z. Humboldt-Univ. Berlin Math.-Natur. Reihe 19 (1970), 589–592.MR 48 # 9601 · Zbl 0271.53037 [5] R. Sulanke undP. Wintgen,Differentialgeometrie und Faserbündel, Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften, Math. Reihe, Bd. 48, Birkhäuser-Verlag, Basel-Stuttgart, 1972, 299 S.Zbl 271. 53035 [6] B. Szociński, Niezmienniki pary punktów geometrii podwójnie pseudostochastycznej (Invariants of a pair of points of doubly pseudostochastic geometry),Zeszyty Nauk. Politech. Śląsk. Mat.-Fiz. 24 (1974), 25–36 (Polish Russian and English summaries)MR 51 # 6622 [7] B. Szociński, Iloczyn i, pseudoiloczyn skalarny w geometrii Kleina,Zeszyty Nauk. Politech. Śląsk. Mat.-Fiz. 25 (1974), 169–179 (Polish). [8] B. Szociński, Podstawowe pojecia geometrii podwójnie pseudostochastycznej, Uniwersytet Śląski Katowice, 1975 (Dissertation). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.