×

Generalized higher order cohomology operations and stable homotopy groups of spheres. (English) Zbl 0335.55009


MSC:

55Q45 Stable homotopy of spheres
55S20 Secondary and higher cohomology operations in algebraic topology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adams, J. F., On the groups \(J(X)\), IV, Topology, 5, 21-72 (1966) · Zbl 0145.19902
[2] Adams, J. F., Lectures on generalized cohomology, (Lecture Notes in Mathematics, Vol. 99 (1969), Springer-Verlag: Springer-Verlag Berlin), 1-138
[3] Adams, J. F., Quillen’s work on formal groups and complex cobordism, University of Chicago Lecture Notes (1970) · Zbl 0238.55007
[4] Adams, J. F., Stable homotopy and generalized homology, University of Chicago Lecture Notes (1971) · Zbl 0309.55016
[5] Adams, J. F., University of Chicago Lecture Notes (1973)
[6] Anderson, D. W., Thesis (1964), University of California: University of California Berkeley
[7] Boardman, J. M., Stable homotopy theory (1965), University of Warwick, mimeographed · Zbl 0198.56102
[8] Brown, E. H.; Peterson, F. P., A spectrum whose \(Z_p\)-cohomology is the algebra of reduced \(p\) th powers, Topology, 5, 149-154 (1966) · Zbl 0168.44001
[9] H. M. Hazewinkel\(E_{(p)} \); H. M. Hazewinkel\(E_{(p)} \)
[10] Jankowski, A., Algebras of the cohomology operations in some cohomology theories, Polish Academy of Science, Preprint, no. 19 (1971) · Zbl 0281.55008
[11] D. C. Johnson; D. C. Johnson
[12] D. C. Johnson and R. Zahler; D. C. Johnson and R. Zahler
[13] Kosinski, A., On the inertia group of π-manifolds, Amer. J. Math., 89, 227-248 (1967) · Zbl 0172.25303
[14] I. Kozma; I. Kozma · Zbl 0304.57019
[15] P. S. LandweberIllinois J. Math.; P. S. LandweberIllinois J. Math. · Zbl 0261.55006
[16] MacLane, S., Homology (1963), Springer-Verlag: Springer-Verlag Berlin · Zbl 0133.26502
[17] Maunder, C. R.F, Cohomology operations of the \(N\) th kind, Proc. London Math. Soc., 13, No. 3, 125-154 (1963) · Zbl 0108.17701
[18] Milnor, J., The Steenrod algebra and its dual, Ann. of Math., 67, 150-171 (1958) · Zbl 0080.38003
[19] Mosher, R. E.; Tangora, M. C., Cohomology Operations and Applications in Homotopy Theory (1968), Harper and Row: Harper and Row New York · Zbl 0153.53302
[20] F. P. Peterson\(Vn\); F. P. Peterson\(Vn\)
[21] D. Puppe; D. Puppe
[22] Smith, L., On realizing complex bordism modules I, Amer. J. Math., 92, 793-856 (1970)
[23] Spanier, E., Higher order operations, Trans. Amer. Math. Soc., 109, 509-539 (1963) · Zbl 0119.18403
[24] Smith, L.; Zahler, R., Detecting stable homotopy classes, Math. Z., 129, 137-156 (1972) · Zbl 0274.55003
[25] Toda, H., \(p\)-primary components of homotopy groups IV, Mem. Coll. Sci. Univ. Kyoto, 32, 297-332 (1959), Ser. A · Zbl 0095.16802
[26] Toda, H., On spectra realizing exterior parts of the Steenrod algebra, Topology, 10, 53-66 (1971) · Zbl 0223.55029
[27] Toda, H., Algebra of stable homotopy of \(Z_p\)-spaces and applications, Kyoto J. Math., 11, 197-251 (1971) · Zbl 0228.55015
[28] E. Thomas and R. Zahler\(γ_I\)J. Pure Appl. Algebra; E. Thomas and R. Zahler\(γ_I\)J. Pure Appl. Algebra · Zbl 0287.55014
[29] R. Vogtin; R. Vogtin · Zbl 0224.55014
[30] Wilson, W. S., The Ω-spectrum for Brown-Peterson cohomology, part I, Comment. Math. Helv., 48, 45-55 (1973) · Zbl 0256.55007
[31] Zahler, R., The Adams-Novikov spectral sequence for the spheres, Ann. of Math., 96, 480-504 (1972) · Zbl 0244.55021
[32] Zahler, R., Detecting stable homotopy with secondary cobordism operations, I, Quart. J. Math., 25, 213-226 (1974) · Zbl 0286.55013
[33] Zahler, R., Existence of the stable homotopy family {\(γ_t\)}, Bull. Amer. Math. Soc., 79, 787-789 (1973) · Zbl 0273.55017
[34] R. Zahler; R. Zahler · Zbl 0299.57019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.