×

zbMATH — the first resource for mathematics

Une obstruction pour scinder une équivalence d’homotopie en dimension 3. (French) Zbl 0335.57005

MSC:
57N10 Topology of general \(3\)-manifolds (MSC2010)
57M05 Fundamental group, presentations, free differential calculus
55P10 Homotopy equivalences in algebraic topology
55Q05 Homotopy groups, general; sets of homotopy classes
57N65 Algebraic topology of manifolds
57R40 Embeddings in differential topology
57R65 Surgery and handlebodies
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] S. E. CAPPELL , Splitting obstructions for Hermitian forms and manifolds with Z2 \subset \pi 1 (Bull. Amer. Math. Soc., vol. 79, 1973 , p. 909-913). Article | MR 49 #3987 | Zbl 0272.57016 · Zbl 0272.57016 · doi:10.1090/S0002-9904-1973-13255-0 · minidml.mathdoc.fr
[2] S. E. CAPPELL , Unitary nilpotent groups and Hermitian K-theory, I (Bull. Amer. Math. Soc., vol. 80, 1974 , p. 1117-1122). Article | MR 50 #11274 | Zbl 0322.57020 · Zbl 0322.57020 · doi:10.1090/S0002-9904-1974-13636-0 · minidml.mathdoc.fr
[3] S. E. CAPPELL , Manifolds with fundamental group a generalized free product, I (Bull. Amer. Math. Soc., vol. 80, 1974 , p. 1193-1198). Article | MR 50 #8562 | Zbl 0341.57007 · Zbl 0341.57007 · doi:10.1090/S0002-9904-1974-13673-6 · minidml.mathdoc.fr
[4] D. B. A. EPSTEIN , Projective planes in 3-manifolds (Proc. London Math. Soc., (3), 11, 1961 , p. 469-484). MR 27 #2968 | Zbl 0111.18801 · Zbl 0111.18801 · doi:10.1112/plms/s3-11.1.469
[5] H. HENDRIKS , Applications de la théorie d’obstruction en dimension 3 (C. R. Acad. Sc., Paris, t. 276, 1973 , p. A 1101-1104.) MR 47 #7744 | Zbl 0257.57001 · Zbl 0257.57001
[6] H. HENDRIKS , Applications de la théorie d’obstruction en dimension 3 (Thèse, Publ. math. d’Orsay, n^\circ 133-7535, 1975 ). MR 55 #6432
[7] G. HIGMAN , The units of group-rings (Proc. London Math. Soc., vol. 46, 1940 , p. 231-248). MR 2,5b | Zbl 0025.24302 | JFM 66.0104.04 · Zbl 0025.24302 · doi:10.1112/plms/s2-46.1.231 · www.emis.de
[8] M. W. HIRSCH , Immersions of manifolds (Trans. Amer. Soc., vol. 93, 1959 , p. 242-276). MR 22 #9980 | Zbl 0113.17202 · Zbl 0113.17202 · doi:10.2307/1993453
[9] H. HENDRIKS et F. LAUDENBACH , Scindement d’une équivalence d’homotopie en dimension 3 (C. R. Acad. Sc., Paris, t. 276, 1973 , p. A 1275-1278). MR 47 #7745 | Zbl 0255.57004 · Zbl 0255.57004 · eudml:81936
[10] H. HENDRIKS et F. LAUDENBACH , Scindement d’une équivalence d’homotopie en dimension 3 (Ann. scient. Éc. Norm. Sup., t. 7, 1974 , p. 203-218). Numdam | MR 51 #1827 | Zbl 0303.57003 · Zbl 0303.57003 · numdam:ASENS_1974_4_7_2_203_0 · eudml:81936
[11] F. LAUDENBACH , Topologie de la dimension 3 : homotopie et isotopie (Astérisque, vol. 12, 1974 ). MR 50 #8527 | Zbl 0293.57004 · Zbl 0293.57004
[12] J. STALLINGS , Whitehead torsion of free products (Ann. of Math., vol. 82, 1965 , p. 354-363). MR 31 #3518 | Zbl 0132.26804 · Zbl 0132.26804 · doi:10.2307/1970647
[13] J. STALLINGS , Group theory and three-dimensional manifolds , Yale University Press, 1971 . Zbl 0241.57001 · Zbl 0241.57001
[14] G. A. SWARUP , On a theorem of C. B. Thomas (J. London Math. Soc., vol. 8, 1974 , p. 13-21). MR 49 #6225 | Zbl 0281.57003 · Zbl 0281.57003 · doi:10.1112/jlms/s2-8.1.13
[15] G. A. SWARUP , Homotopy type of closed 3-manifolds , preprint, Tata Institute, 1974 .
[16] G. A. SWARUP , On embedded spheres in 3-manifolds II , preprint, Tata Institute, 1974 .
[17] C. B. THOMAS , The oriented homotopy type of compact 3-manifolds (Proc. London Math. Soc., vol. 19, 1969 , p. 31-44). MR 40 #2088 | Zbl 0167.21502 · Zbl 0167.21502 · doi:10.1112/plms/s3-19.1.31
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.