Scott, Melvin R.; Vandevender, Walter H. A comparison of several invariant imbedding algorithms for the solution of two-point boundary-value problems. (English) Zbl 0335.65031 Appl. Math. Comput. 1, 187-218 (1975). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 12 Documents MSC: 65L10 Numerical solution of boundary value problems involving ordinary differential equations 34B05 Linear boundary value problems for ordinary differential equations PDF BibTeX XML Cite \textit{M. R. Scott} and \textit{W. H. Vandevender}, Appl. Math. Comput. 1, 187--218 (1975; Zbl 0335.65031) Full Text: DOI OpenURL References: [1] Stokes, G.G., Mathematical and physical papers, Vol. 2, (1880), Cambridge U.P · Zbl 0171.24801 [2] Bellman, R.E.; Kalaba, R.E., On the principle of invariant imbedding and propagation through inhomogeneous media, Proc. natl. acad. sci. U.S.A., 42, 629-632, (1956) · Zbl 0071.41605 [3] Scott, M.R., A bibliography on invariant imbedding and related topics, () [4] Kagiwada, H.H.; Kalaba, R.E., A new initial-value method for internal intensities in radiative transfer, Astrophys. J., 147, 301-309, (1967) · Zbl 0264.65078 [5] Bellman, R.E.; Kagiwada, H.H.; Kalaba, R.E., Invariant imbedding and the numerical integration of boundary-value problems for unstable linear systems of ordinary differential equations, Comm. A.C.M., 10, 100-102, (1967) · Zbl 0148.39205 [6] Casti, J.L.; Kalaba, R.E., Imbedding methods in applied mathematics, (1973), Addison-Wesley Reading, Mass · Zbl 0265.65001 [7] Scott, M.R., Invariant imbedding and the calculation of internal values, J. math. anal. appl., 28, 112-119, (1969) · Zbl 0186.41202 [8] Scott, M.R., Numerical solution of unstable initial-value problems by invariant imbedding, Comput. J., 13, 397-400, (1970) · Zbl 0211.47202 [9] Scott, M.R.; Nelson, P., Internal values in particle transport by the method of invariant imbedding, J. math. anal., 34, 628-643, (1971) · Zbl 0217.53002 [10] Scott, M.R., Invariant imbedding and its applications to ordinary differential equations, (1973), Addison-Wesley, Reading, Mass. [11] Denman, E.D., Coupled modes in plasmas, electric media, and parametric amplifiers, (1970), Elsevier New York [12] Denman, E.D., Invariant imbedding and linear systems, () · Zbl 0435.65077 [13] Allen, R.C.; Wing, G.M., A numerical algorithm suggested by problems of transport in periodic media, J. math. anal. appl., 29, 141-157, (1970) · Zbl 0167.45702 [14] Allen, R.C.; Wing, G.M., An invariant imbedding algorithm for the solution of inhomogeneous two-point boundary-value problems, J. comput. phys., 14, 40-58, (1974) · Zbl 0273.65065 [15] Meyer, G.H., Initial-value methods for boundary-value problems, (1973), Academic New York [16] Jordan, P.F.; Shelley, P.E., Stabilization of unstable two-point boundary-value problems, Aiaa j., 4, 923-924, (1966) · Zbl 0212.17705 [17] Miller, R.E., Use of the field method for numerical integration of two-point boundary-value problems, Aiaa j., 5, 811-813, (1967) · Zbl 0155.20501 [18] Cohen, G.A., Feasibility study of the numerical integration of shell equations using thefield method, Nasa-CR-112270, (1973) [19] Babuska, I.; Prager, M.; Vitasek, E., Numerical processes in differential equations, (1966), Wiley-Interscience New York · Zbl 0156.16003 [20] Taufer, J., On factorization method, Apl. mat., 11, 427-457, (1966) · Zbl 0149.04803 [21] Taufer, J.; Hrubec, I., Comparison of the factorization method and the method of combination of solutions, Apl. mat., 17, 209-224, (1972) · Zbl 0262.65050 [22] Gelfand, I.; Fomin, S., Calculus of variations, (1963), Prentice-Hall Englewood Cliffs, N.J, ice-Hall, Englewood Cliffs, N.J. · Zbl 0127.05402 [23] Berezin, I.; Zhidkov, N., Computing methods, Vol. II, (1965), Pergamon Oxford · Zbl 0122.12903 [24] Rybicki, G.B.; Usher, P.D., The generalized Riccati transformation as a simple alternative to invariant imbedding, Astrophys. J., 46, 871-879, (1966) · Zbl 0145.11103 [25] Matti, H.; Chow, C.K.; Stock, F.T., Solution of ill-conditioned linear two-point boundary-value problems by the Riccati transformation, SIAM rev., 11, 616, (1969) · Zbl 0195.17202 [26] Tapley, B.D.; Williamson, W.E., Comparison of linear and Riccati equations used to solve optimal control problems, Aiaa j., 10, 1154-1159, (1972) · Zbl 0244.49010 [27] Bailey, P.B.; Wing, G.M., Some recent developments in invariant imbedding with applications, J. math. phys., 6, 453-462, (1965) · Zbl 0196.11501 [28] Keller, H.B., Shooting and imbedding for two-point boundary-value problems, J. math. anal. appl., 36, 598-610, (1971) · Zbl 0249.34009 [29] Golberg, M.A., Invariant imbedding for differential equations with integral boundary conditions, J. math. anal. appl., 38, 92-105, (1972) · Zbl 0243.34022 [30] Casti, J.L.; Kalaba, R.E.; Scott, M.R., A proposal for the calculation of characteristic functions for certain differential and integral operators via initial value procedures, J. math. anal. appl., 41, 1-13, (1973) · Zbl 0251.65056 [31] Denman, E.D.; Nelson, P., Comparison of linear and Riccati equations used to solve optimal control problems, Aiaa j., 12, 575-576, (1974), Comment on [32] M. R. Scott, A discussion of the stability of Riccati equations, to be published. [33] Nelson, P.; Giles, C.A., A useful device for certain boundary-value problems, J. comput. phys., 10, 374-377, (1972) · Zbl 0253.65051 [34] Bellman, R.E.; Kalaba, R.E.; Wing, G.M., Invariant imbedding and mathematical physics—I: particle processes, J. math. phys., 1, 280-308, (1960) · Zbl 0105.23202 [35] M. A. Golberg, Some functional relationships for two-point boundary-value problems—II: The inhomogeneous case, Appl. Math. Comput., to be published. · Zbl 0339.34014 [36] M. R. Scott and W. H. Vandevender, A new formulation of the addition formulas of invariant imbedding, to be published. · Zbl 0335.65031 [37] Hull, T.E.; Emright, W.H.; Fellen, B.M.; Sedgwick, A.E., Comparing numerical methods for ordinary differential equations, J. numer. anal., 9, 603-637, (1972) · Zbl 0221.65115 [38] Krogh, F.T., On testing a subroutine for the numerical integration of ordinary differential equations, J. a. c. m., 20, 545-562, (1973) · Zbl 0292.65039 [39] S. Davenport, L. F. Shampine, and H. A. Watts, Comparison of some codes for the initial value problem for ordinary differential equations, SIAM Review (to appear). · Zbl 0308.65042 [40] Partlett, B.; Wang, Y., Can you write a decent {\scfortran} subroutine without knowing the computer and the compiler which will process it, SIAM 1973 national meeting, (18-21 June 1973), Hampton, Va. [41] H. A. Watts and L. F. Shampine, {\scrkf}—a Runge-Kutta-Fehlberg fourth order integrator, Sandia Labs., Albuquerque, New Mexico. [42] Shampine, L.F.; Gordon, M.K., Computer solution of ordinary differential equations: the initial value problem, (1974), Freeman · Zbl 0347.65001 [43] M. R. Scott and H. A. Watts, {\scstiff}—a variable-order, variable step integrator for stiff equations, Sandia Lab. Albuquerque, N. M. [44] Bailey, C.B.; Jones, R.E., Brief instructions for using the sandia numerical mathematical subroutine library on the CDC 6600, Sla-74-0095, (1974), Sandia Lab Albuquerque, N. M [45] Bulirsch, R.; Stoer, J., Einführung in die numerische Mathematik II, (1973), Springer Berlin · Zbl 0257.65001 [46] M. Lentini and V. Pereyra, A variable order, variable step, finite difference method for nonlinear multipoint boundary value problems, Math. Comput., to be published. · Zbl 0308.65054 [47] Greenspan, D., Approximate solution of initial-value problems for ordinary differential equations by boundary-value techniques, J. math. phys. sci., 1, 261-274, (1967) · Zbl 0208.41402 [48] Holt, J.F., Numerical solution of nonlinear two-point boundary-value problems by finite difference methods, Commun. A. C. M., 7, 363-373, (1964) · Zbl 0123.11805 [49] Fox, L.; Mitchell, A.R., Boundary-value techniques for the numerical solution of initial-value problems in ordinary differential equations, Quart. J. mech. appl. math., 10, 232-243, (1957) · Zbl 0077.32602 [50] P. B. Bailey, L. F. Shampine, and P. E. Waltman, Nonlinear Boundary-Value Problems, Academic, New York. [51] Keller, H.B., Accurate difference methods for linear ordinary differential systems subject to linear constraints, SIAM J. numer. anal., 6, 8-30, (1969) · Zbl 0176.14801 [52] Ortega, J.; Rheinboldt, W., On discretization and differentiation of operators with application to Newton’s method, Nasa-CR-63634, (May 1965), Univ. of Maryland College Park, Md [53] Shampine, L.F.; Thompson, R.J., Difference methods for nonlinear first-order hyperbolic systems of equations, Math. comput., 24, 45-56, (1970) · Zbl 0196.17801 [54] Bellman, R.E.; Kalaba, R.E., Quasilinearization and nonlinear boundary-value problems, (1965), Elsevier New York · Zbl 0139.10702 [55] Keller, H.B., Numerical methods for two-point boundary-value problems, (1968), Blaisdell Waltham, Mass · Zbl 0172.19503 [56] Roberts, S.M.; Shipman, J.S., Two-point boundary-value problems: shooting methods, (1972), Elsevier New York · Zbl 0247.65052 [57] Miele, A.; Iyer, R.R., General technique for solving nonlinear, two-point boundary-value problems via the method of particular solutions, J. opt. theory appl., 5, 382-399, (1970) · Zbl 0184.19905 [58] Krogh, F.T., Efficient algorithms for polynomial interpolation and numerical differentiation, Math. comput., 24, 185-190, (1970) · Zbl 0198.21101 [59] Huddleston, R.E., CDC 6600 routines for the interpolation of data and of data with derivatives, Sll-74-0214, (1974), Sandia Lab Livermore, California [60] Allen, R.C.; Scott, M.R.; Wing, G.M., Solution of a certain class of nonlinear two-point boundary-value problems, J. comput. phys., 4, 250-257, (1969) · Zbl 0202.16001 [61] Ciarlet, P.G.; Schultz, M.H.; Varga, R.S., Numerical methods of high-order accuracy for nonlinear boundary-value problems. I. one dimensional problem, Numer. math., 9, 394-430, (1967) · Zbl 0155.20403 [62] Wasserstorm, E., Numerical solutions by the continuation method, SIAM rev., 15, 89-119, (1973) [63] Roberts, S.M.; Shipman, J.S., Solution of Troesch’s two-point boundary value problem by a combination of techniques, J. comput. phys., 10, 232-241, (1972) · Zbl 0247.65052 [64] Miele, A.; Aggarwal, A.K.; Tietze, J.L., Solution of a two-point boundary-value problem with Jacobian matrix characterized by extremely large eigenvalues, J. comput. phys., 15, (1974) · Zbl 0303.65075 [65] Jones, D.J., Solution of Troesch’s and other, two-point boundary-value problems by shooting techniques, J. comput. phys., 12, 429-434, (1973) · Zbl 0264.65046 [66] M. R. Scott and H. A. Watts, A test example for nonlinear boundary-value codes, to be published. [67] Nelson, P., A comparative study of invariant imbedding and superposition, Int. J. comput. math., 3, 195-207, (1972) · Zbl 0263.65084 [68] J. B. Rivard and M. R. Scott, The two-phase, three-zone melting problem— response to pulse heating, to be published. · Zbl 0353.76071 [69] Casti, J.L., Reduction of dimensionality for systems of linear two-point boundary-value problems with constant coefficients, J. math. anal. appl., 45, 522-531, (1974) · Zbl 0291.34012 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.