Konvergenzaussagen für Projektionsverfahren bei linearen Operatoren. (German) Zbl 0336.65031


65J05 General theory of numerical analysis in abstract spaces
65L10 Numerical solution of boundary value problems involving ordinary differential equations
65D30 Numerical integration
Full Text: DOI EuDML


[1] Agmon, S.: Lectures on elliptic boundary value problems. Princeton: Van Nostrand 1965 · Zbl 0142.37401
[2] Agmon, S., Douglis, A., Nirenberg, N.: Estimates near the boundary of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math.12, 623-727 (1959) · Zbl 0093.10401
[3] Amann, H.: Zum Galerkin-Verfahren für die Hammersteinsche Gleichung. Arch. Rat. Mech. Anal.35, 114-121 (1969) · Zbl 0186.20902
[4] Aubin, J.-P.: Approximation of elliptic boundary value problems. New York: Wiley 1972 · Zbl 0248.65063
[5] Ciarlet, P. G.: An o(h 2) method for a non-smooth boundary value problem. Aequationes math.2, 39-49 (1968) · Zbl 0159.11703
[6] Ciarlet, P. G., Schultz, M. H., Varga, R. S.: Numerical methods of high-order accuracy for nonlinear boundary value problems. I. Numer. Math.9, 394-430 (1967) · Zbl 0155.20403
[7] Ciarlet, P. G., Schultz, M. H., Varga, R. S.: Numerical methods of high-order accuracy for nonlinear boundary value problems. I. Numer. Math.13, 51-77 (1969) · Zbl 0181.18603
[8] Collatz, L.: The numerical treatment of differential equations. Berlin: Springer 1960 · Zbl 0086.32601
[9] The mathematical foundations of the finite element method with applications to partial differential equations (A. K. Aziz, ed.), New York: Academic Press 1972
[10] Friedman, A.: Partial differential equations. New York: Holt, Rinehart, Winston 1969 · Zbl 0224.35002
[11] Kantorowitsch, L. W., Akilow, G. P.: Funktionalanalysis in normierten Räumen. Berlin: Akademie-Verlag 1964 · Zbl 0359.46017
[12] Krasnoselskij, M. A.: Topological methods in the theory of nonlinear integral equations. Oxford: Pergamon Press 1964
[13] Lucas, T. R., Reddien, G. W.: A high order projection method for nonlinear twopoint boundary value problems. Numer. Math.20, 257-270 (1973) · Zbl 0247.65050
[14] Nitsche, J.: Vergleich der Konvergenzgeschwindigkeit des Ritzschen Verfahrens und der Fehlerquadratmethode. ZAMM49, 591-596 (1969) · Zbl 0221.65102
[15] Nitsche, J.: Zur Konvergenz von Näherungsverfahren bezüglich verschiedener Normen. Numer. Math.15, 224-228 (1970) · Zbl 0221.65092
[16] Perrin, F. M., Price, H. S., Varga, R. S.: On higher-order numerical methods for nonlinear two-point boundary value problems. Numer. Math.13, 180-198 (1969) · Zbl 0183.44501
[17] Petryshyn, W. V.: Projection methods in nonlinear numerical functional analysis. J. Math. Mech.17, 353-372 (1967) · Zbl 0162.20202
[18] Philipps, J. L.: The use of collocation as a projection method for solving linear operator equations. SIAM J. Numer. Anal.9, 12-28 (1972)
[19] Polskij, N. I.: Projective methods in applied mathematics. Sov. Math.3, 488-492 (1962) · Zbl 0209.47301
[20] Russel, R. D., Shampine, L. F.: A collocation method for boundary valueproblems. Numer. Math.19, 1-28 (1972) · Zbl 0221.65129
[21] Schatz, A. H.: An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp.28, 959-962 (1974) · Zbl 0321.65059
[22] Shirali, S.: A note on Galerkin’s method for nonlinear equations. Aequations math.4, 198-200 (1970) · Zbl 0203.14802
[23] Urabe, M.: Galerkin’s procedure for nonlinear periodic systems. Arch. Rat. Mech. Anal.20, 120-152 (1965) · Zbl 0133.35502
[24] Vainikko, G. M.: On the stability and convergence of the collocation method. Differential Equations1, 186-194 (1965) · Zbl 0171.36503
[25] Witsch, K.: Konvergenzaussagen für Projektionsverfahren bei linearen Operatoren, insbesondere Randwertaufgaben. Dissertation, Köln (1974) · Zbl 0336.65031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.