zbMATH — the first resource for mathematics

Generalized reduced gradient method as an extension of feasible direction methods. (English) Zbl 0336.65035

65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
Full Text: DOI
[1] Wolfe, P.,An Extended Simplex Method, Notices of the American Mathematical Society, Vol. 9, No. 4, 1962. · Zbl 0109.14004
[2] Wolfe, P.,On the Convergence of Gradient Methods under Constraints, IBM Journal of Research and Development, Vol. 19, No. 4, 1972. · Zbl 0265.90046
[3] Zangwill, W.,The Convex-Simplex Method, Management Science, Vol. 14, No. 3, 1967. · Zbl 0153.49002
[4] Zangwill, W.,Nonlinear Programming: A Unified Approach, Prentice-Hall, Englewood Cliffs, New Jersey, 1969. · Zbl 0195.20804
[5] Faure, P., andHuard, P.,Résolution de Programmes Mathématiques à Fonction Nonlinéaire par la Méthode du Gradient Réduit, Revue Française de Recherche Opérationnelle, Vol. 9, No. 36, 1965.
[6] Huard, P.,Convergence of the Reduced Gradient Method, Paper presented at the Nonlinear Programming Symposium, Madison, Wisconsin, 1974.
[7] Cabay, D., andLuenberger, D G.,Efficiently Converging Methods for Nonlinear Constrained Minimization Methods Based on the Reduced Gradient, SIAM Journal on Control and Optimization, Vol. 14, No. 1, 1976.
[8] Abadie, J., andCarpentier, J.,Généralisation de la Méthode du Gradient Réduit de Wolfe au Cas de Contraintes Nonlinéaires, Proceedings of the IFORS Congress, Cambridge, Massachusetts, 1966.
[9] Gochet, W., Loute, E., andSolow, W.,Comparative Computer Results of Three Algorithms for Solving Prototype Geometric Programming Problems, Cahier du Centre d’Etudes de Recherche Opérationnelle, Vol. 16, No. 4, 1974. · Zbl 0294.90082
[10] Himmelblau, D.,Applied Nonlinear Programming, McGraw-Hill Book Company, New York, New York, 1972. · Zbl 0241.90051
[11] Smeers, Y.,A Convergence Proof of a Special Version of the Generalized Reduced Gradient Method (GRGS), Revue Française d’Automatique, Informatique, et Recherche Opérationnelle, Vol. 5, No. 3, 1974.
[12] Abadie, J., andCarpentier, J.,Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints, Optimization, Edited by R. Fletcher, Academic Press, London, England, 1969. · Zbl 0254.90049
[13] Hadley, G.,Linear Algebra, Addision-Wesley Publishing Company, Reading, Massachusetts, 1961.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.