Beale, J. Thomas Eigenfunction expansions for objects floating in an open sea. (English) Zbl 0336.76004 Commun. Pure Appl. Math. 30, 283-313 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 11 Documents MSC: 76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing 76B99 Incompressible inviscid fluids PDF BibTeX XML Cite \textit{J. T. Beale}, Commun. Pure Appl. Math. 30, 283--313 (1977; Zbl 0336.76004) Full Text: DOI OpenURL References: [1] and , Spectral and Scattering Theory for Schroedinger Operators, Various Publications Series, No. 7, Matematisk Institut, Aarhus Universitet, Aarhus, 1969. [2] Friedman, J. Math. Mech 17 pp 107– (1967) [3] Ikebe, Arch. Rat. Mech. Anal. 5 pp 1– (1960) [4] John, Comm. Pure Appl. Math. 2 pp 13– (1949) [5] John, Comm. Pure Appl. Math. 3 pp 45– (1950) [6] Jones, Proc. Cambridge Philos. Soc. 49 pp 668– (1953) [7] and , Scattering Theory, Academic Press, New York, 1967. [8] Lax, Indiana Univ. Math. J. 22 pp 101– (1972) [9] Majda, J. Diff. Eqns. 16 pp 515– (1974) [10] Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966. · Zbl 0142.38701 [11] Shenk, J. Math. Anal. Appl. 36 pp 313– (1971) [12] Ursell, Proc. Cambridge Philos. Soc. 47 pp 347– (1951) [13] Ursell, J. Fluid Mech. 19 pp 305– (1964) [14] Vainberg, Trans. Moscow Math., Soc. 28 pp 56– (1973) [15] The existence and decay of water waves in the presence of a fixed obstacle, Dissertation, New York University, New York, 1976. [16] Wehausen, Ann. Rev. of Fluid Mech. 3 pp 237– (1971) [17] Scattering Theory for the d’Alembert Equation in Exterior Domains, Lecture Notes in Mathematics, No. 442, Springer-Verlag, New York, 1975. · Zbl 0299.35002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.