Bloom, Stephen L. Varieties of ordered algebras. (English) Zbl 0337.06008 J. Comput. Syst. Sci. 13, 200-212 (1976). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 88 Documents MSC: 06F25 Ordered rings, algebras, modules 08B99 Varieties 03D99 Computability and recursion theory PDFBibTeX XMLCite \textit{S. L. Bloom}, J. Comput. Syst. Sci. 13, 200--212 (1976; Zbl 0337.06008) Full Text: DOI References: [1] Elgot, C. C., Monadic computation and iterative algebric theories, (Rose, H. E.; Shepherdson, J. C., Proceedings of the Logic Colloquium. Proceedings of the Logic Colloquium, Bristol, 1973 (1975), North-Holland: North-Holland Amsterdam), 175-230 · Zbl 0327.02040 [2] Goguen, J. A.; Thatcher, J. W.; Wagner, E. G.; Wright, J. B., Initial algebra semantics and continuous algebras, IBM Research Report RC 5701 (1975), To appear in J. Assoc. Comput. Mach · Zbl 0306.18005 [3] Gratzer, G., (Universal Algebra (1968), Van Nostrand: Van Nostrand Princeton) · Zbl 0182.34201 [4] Lawvere, F. W., Functional semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A., 50, No. 5, 869-872 (1963) · Zbl 0119.25901 [5] Scott, D., The lattice of flow diagrams, (Engeler, E., Semantics of Algorithmic Languages. Semantics of Algorithmic Languages, Springer Lecture Notes in Mathematics, Vol. 182 (1971), Springer-Verlag: Springer-Verlag New York/Berlin), 311-366 · Zbl 0228.68016 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.