×

Cohomology of the infinitesimal site. (English) Zbl 0337.14018


MSC:

14F30 \(p\)-adic cohomology, crystalline cohomology
14F20 Étale and other Grothendieck topologies and (co)homologies
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
58C25 Differentiable maps on manifolds
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] P. BERTHELOT , Cohomologie cristalline des schémas de caractéristique p > 0 (Lecture Notes in Math., No. 407, Springer Verlag, 1974 ). MR 52 #5676 | Zbl 0298.14012 · Zbl 0298.14012
[2] A. GROTHENDIECK , Crystals and the de Rham Cohomology of Schemes (Dix exposés sur la cohomologie des schémas, Adv. Studies in Pure Math., vol. 3, p. 306-358, North-Holland Pub. Co.). MR 42 #4558 | Zbl 0215.37102 · Zbl 0215.37102
[3] A. GROTHENDIECK et J. DIEUDONNÉ , Eléments de Géométrie algébrique (Publ. Math. I.H.E.S., [EGA]). Numdam · Zbl 0203.23301
[4] A. GROTHENDIECK and J. MURRE , The Tame Fundamental Group of a Formal Neighborhood of a Divisor with Normal Crossings on a Scheme (Lecture Notes in Math., No. 208, Springer, 1971 ). MR 47 #5000 | Zbl 0216.33001 · Zbl 0216.33001
[5] R. HARTSHORNE , Ample Subvarieties of Algebraic Varieties (Lecture Notes in Math., No. 156, Springer, 1970 ). MR 44 #211 | Zbl 0208.48901 · Zbl 0208.48901
[6] N. KATZ , Nilpotent Connections and the Monodromy Theorem: Applications of a Theorem of Turritin , (Publ. Math. I.H.E.S., vol. 39, 1970 , p. 175-232). Numdam | MR 45 #271 | Zbl 0221.14007 · Zbl 0221.14007
[7] B. MAZUR , Frobenius and the Hodge Filtration (estimates) (Ann. of Math., vol. 98, 1973 , p. 58-95). MR 48 #297 | Zbl 0261.14005 · Zbl 0261.14005
[8] A. OGUS , Local Cohomological Dimension of Algebraic Varieties (Ann. of Math. vol. 98, 1973 , p. 327-365). MR 58 #22059 | Zbl 0308.14003 · Zbl 0308.14003
[9] A. OGUS , On the Formal Neighborhood of a Subvariety of Projective Space (to appear). Zbl 0331.14002 · Zbl 0331.14002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.