Characters and Jacquet modules. (English) Zbl 0337.22019


22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings
Full Text: DOI EuDML


[1] Borel, A., Tits, J.: Groupes réductifs. Publ. Math. I.H.E.S. 55-151 (1965) · Zbl 0145.17402
[2] Cartier, P.: Les représentations des groupes réductifsp-adiques et leurs caracteres. Seminaire Bourbaki No. 471
[3] Casselman, W.: Introduction to the theory of admissible representations ofp-adic reductive groups. To appear
[4] Casselman, W., Osborne, M. S.: Then-cohomology of representations with an infinitesimal character. Comp. Math.31, 219-227 (1975) · Zbl 0343.17006
[5] Casselman, W., Osborne, M. S.: The restriction of an admissible representation ton (to appear) · Zbl 0355.20041
[6] Deligne, P.: Le support du caractere d’une représentation supercuspidale (to appear in the Comptes Rendues de l’Académie des Sciences) · Zbl 0336.22009
[7] Harish-Chandra: The characters of reductivep-adic groups (to appear) · Zbl 0365.22016
[8] Howe, R.: The Fourier transform and germs of characters. Math. Ann.208, 305-322 (1974) · Zbl 0273.43011
[9] Osborne, M. S.: Thesis, Yale, 1973
[10] Springer, T. A., Steinberg, R.: Conjugacy classes. In Seminar on algebraic groups and related finite groups. Berlin, Heidelberg, New York: Springer 1970 · Zbl 0249.20024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.