zbMATH — the first resource for mathematics

Charakterisierung der Unterräume von \((s)\). (German) Zbl 0337.46015

46A45 Sequence spaces (including Köthe sequence spaces)
46A03 General theory of locally convex spaces
46A19 Other “topological” linear spaces (convergence spaces, ranked spaces, spaces with a metric taking values in an ordered structure more general than \(\mathbb{R}\), etc.)
Full Text: DOI EuDML
[1] Bessaga, C.: Some remarks on Dragilev’s theorem. Studia math.31, 307-318 (1968) · Zbl 0182.45301
[2] Dragilev, M. M.: On Regular Bases in Nuclear Spaces. Amer. math. Soc. Translat., II. Ser.93, 61-82 (1970). (Engl. ?bersetzung von Mat. Sbornik, n. Ser.68 (110), 153-173 (1965)
[3] Dubinsky, E.: Basic Sequences in (s), Studia math.54, 283-293 (1977) · Zbl 0349.46010
[4] Grothendieck, A.: Produits tensoriels topologiques et espaces nucl?aires. Mem. Amer. math. Soc.16 (1955) · Zbl 0123.30301
[5] Komura, T., Komura, Y.: ?ber die Einbettung der nuklearen R?ume in(s) A. Math. Ann.162, 284-288 (1966) · Zbl 0156.13402
[6] Martineau, A.: Sur une propriet? universelle de l’espace des distributions de M. Schwartz. C. r. Acad. Sci., Paris259, 3162-3164 (1964) · Zbl 0134.31702
[7] Pietsch, A.: Nukleare lokalkonvexe R?ume. Berlin: Akademie-Verlag 1969 · Zbl 0184.14602
[8] Vogt, D.: Vektorwertige Distributionen als Randverteilungen holomorpher Funktionen. Manuscripta math.17, 267-290 (1975) · Zbl 0349.46040
[9] Vogt, D.: Tensorprodukte von (F)- mit (DF)-R?umen und ein Fortsetzungssatz. Preprint
[10] Wagner, M.J.: ?ber zwei spezielle Klassen von Stufenr?umen. Diplomarbeit, Mainz 1975
[11] Zahariuta, V.P.: On the isomorphism of cartesian products of locally convex spaces. Studia math.46, 201-221 (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.