Janas, Jan Note on the joint spectrum of the Wiener-Hopf operators. (English) Zbl 0337.47017 Proc. Am. Math. Soc. 50, 303-308 (1975). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 Document MSC: 47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators PDF BibTeX XML Cite \textit{J. Janas}, Proc. Am. Math. Soc. 50, 303--308 (1975; Zbl 0337.47017) Full Text: DOI OpenURL References: [1] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Mathematical Society Lecture Note Series, vol. 2, Cambridge University Press, London-New York, 1971. · Zbl 0207.44802 [2] John Bunce, The joint spectrum of commuting nonnormal operators, Proc. Amer. Math. Soc. 29 (1971), 499 – 505. · Zbl 0215.20903 [3] L. A. Coburn and R. G. Douglas, \?*-algebras of operators on a half-space. I, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 59 – 67. · Zbl 0241.47026 [4] A. T. Dash, Joint spectra, Studia Math. 45 (1973), 225 – 237. · Zbl 0249.47002 [5] Ronald G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 49. · Zbl 0247.47001 [6] Paul A. Fuhrmann, On the corona theorem and its application to spectral problems in Hilbert space, Trans. Amer. Math. Soc. 132 (1968), 55 – 66. · Zbl 0187.38002 [7] E. M. Klein, More algebraic properties of Toeplitz operators, Math. Ann. 202 (1973), 203 – 207. · Zbl 0234.47030 [8] H. R. Pousson, Systems of Toeplitz operators on \?², Proc. Amer. Math. Soc. 19 (1968), 603 – 608. · Zbl 0159.19103 [9] Joseph L. Taylor, A joint spectrum for several commuting operators, J. Functional Analysis 6 (1970), 172 – 191. · Zbl 0233.47024 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.