×

zbMATH — the first resource for mathematics

Constructive dimension theory. (English) Zbl 0337.55008

MSC:
55M10 Dimension theory in algebraic topology
03F55 Intuitionistic mathematics
54F45 Dimension theory in general topology
03F99 Proof theory and constructive mathematics
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] P.S. Aleksandrov : Combinatorial topology , Vol. 1. Graylock Press, 1956. · Zbl 0097.15903
[2] G. Berg , W. Julian , R. Mines and F. Richman : The constructive equivalence of covering and inductive dimensions , Gen. Top. and Appl. (to appear). · Zbl 0359.54025 · doi:10.1016/0016-660X(77)90012-5
[3] E. Bishop : Foundations of constructive analysis . McGraw-Hill, 1967. · Zbl 0183.01503
[4] L.E.J. Brouwer : Über den natürlichen Dimensionsbegriff . J. Reine Angew. Math. 142 (1913) 146-152. · JFM 44.0555.01
[5] L.E.J. Brouwer : Intuitionistische Einführung des Dimensionsbegriffes . Proc. Akad. Amsterdam 29 (1926) 855-864. · JFM 52.0589.02
[6] W. Hurewicz and H. Wallman : Dimension Theory . Princeton Univ. Press, 1948. · Zbl 0036.12501
[7] J.R. Isbell : Uniform spaces . A.M.S. Math. Surveys 12 (1964). · Zbl 0124.15601
[8] H. Lebesgue : Sur la non applicabilite deux domaines appartenant a des espaces de n et n + p dimensions . Math. Ann. 70 (1911) 166-168. · JFM 42.0419.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.