×

zbMATH — the first resource for mathematics

Sur l’evaluation de l’erreur d’interpolation de Lagrange dans un ouvert de \(R^n\). (French) Zbl 0337.65008

MSC:
65D05 Numerical interpolation
41A05 Interpolation in approximation theory
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
41A63 Multidimensional problems (should also be assigned at least one other classification number from Section 41-XX)
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] BARNHILL R. E. et WHITEMAN J. R., Error Analysis of Finite Element Methods with Triangles for Elliptic Boundary Value Problems, The mathematics of Finite Elements and Applications (J. R. Whiteman, ed.), 83-112, Acad. Press (1973). Zbl0284.65087 · Zbl 0284.65087
[2] BRAMBLE J. H. et HILBERT S. R., Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation, SIAM J. Numer. Anal, 7, 112-124 (1970). Zbl0201.07803 MR263214 · Zbl 0201.07803 · doi:10.1137/0707006
[3] [3] BRAMBLE J. H. et HILBERT S. R., Bounds for a Class of Linear Functionals with Applications to Hermite Interpolation, Numer. Math., 16,362-369 (1971). Zbl0214.41405 MR290524 · Zbl 0214.41405 · doi:10.1007/BF02165007 · eudml:132041
[4] CIARLET P. G. et RAVIART P. A., General Lagrange and Hermite Interpolation in R with Applications to Finite Element Methods, Arch. Rat. Mech. Anal., 46, 177-199 (1972). Zbl0243.41004 MR336957 · Zbl 0243.41004 · doi:10.1007/BF00252458
[5] CIARLET P. G. et RAVIART P. A., Interpolation Theory over Curved Elements with Applications to Finite Element Methods, Comp. Meth. Appl. Mech. Engin., 1, 217-249 (1972). Zbl0261.65079 MR375801 · Zbl 0261.65079 · doi:10.1016/0045-7825(72)90006-0
[6] [6] CIARLET P. G. et WAGSCHAL C, Multipoint Taylor Formulas and Applications to Finite Element Method, Numer Math, 17, 84-100 (1971) Zbl0199.50104 MR287666 · Zbl 0199.50104 · doi:10.1007/BF01395869 · eudml:132060
[7] CHENIN P, These 3e cycle, Grenoble (1974)
[8] [8] COATMELEC C, Approximation et interpolation des fonctions différentiables de plusieurs variables, Ann Sc École Norm Sup (3) 83,271-341 (1966) Zbl0155.10902 MR232143 · Zbl 0155.10902 · numdam:ASENS_1966_3_83_4_271_0 · eudml:81826
[9] DESCLOUX J, Méthode des éléments finis, Ecole polytéchnique fédérale de Lausanne (1973)
[10] MEINGUET J, Realistic Estimates for Generic Constants in Multivariate Pointwise Approximation, Topics in Numerical Analysis II, J J H Miller ed , Acad Press (1975) Zbl0346.65010 MR422972 · Zbl 0346.65010
[11] NE_AS J, Les méthodes directes en théorie des équations élliptiques, Masson (1967) Zbl1225.35003 · Zbl 1225.35003
[12] RAVIART P A, Méthodes des éléments finis, rédige par J M Thomas, D E AAnalyse Numérique, Pans VI (1971-1972)
[13] [13] STRANG G, Approximation in the Finite Element Method, Numer Math , 19, 81-98 (1972) Zbl0221.65174 MR305547 · Zbl 0221.65174 · doi:10.1007/BF01395933 · eudml:132133
[14] STROUD A H, Approximate Calculation of Multiple Intégrals, Prentice Hall (1971) Zbl0379.65013 MR327006 · Zbl 0379.65013
[15] ZIENKIEWICZ O C, La méthode des éléments finis, Ediscience, Paris (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.