×

Archimedean classes in an ordered semigroup. I. (English) Zbl 0338.06005


MSC:

06F05 Ordered semigroups and monoids
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] G. Birkhoff: Lattice theory. 3rd edition. Amer. Math. Soc, Providence, R. I., 1967. · Zbl 0153.02501
[2] A. H. Clifford, G. B. Preston: The algebraic theory of semigroups. Vol. I. Amer. Math. Soc., Providence, R. I., 1961. · Zbl 0111.03403
[3] B. Pondělíček: Archimedean equivalence on ordered semigroups. Czechoslovak Math. J. 22 (97) (1972), 210-219.
[4] T. Saitô: Ordered idempotent semigroups. J. Math. Soc. Japan 14 (1962), 150-169. · Zbl 0112.02101
[5] T. Saitô: Regular elements in an ordered semigroup. Pacific J. Math. 13 (1963), 263 - 295. · Zbl 0113.25202
[6] T. Saitô: Note on the archimedean property in an ordered semigroup. Proc. Japan Acad. 46 (1970), 64-65. · Zbl 0205.02701
[7] T. Saitô: Note on the archimedean property in an ordered semigroup. Bull. Tokyo Gakugei Univ. Ser. IV, 22 (1970), 8-12. · Zbl 0205.02701
[8] T. Saitô: Elements of finite order in an ordered semigroup whose product is of infinite order. Proc. Japan Acad. 50 (1974), 268-270. · Zbl 0367.06018
[9] T. Saitô: Archimedean classes in a nonnegatively ordered semigroup. to appear. · Zbl 0669.20048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.