×

zbMATH — the first resource for mathematics

A survey of semigroups of continuous selfmaps. (English) Zbl 0338.20088

MSC:
20M20 Semigroups of transformations, relations, partitions, etc.
54H15 Transformation groups and semigroups (topological aspects)
20M15 Mappings of semigroups
20M10 General structure theory for semigroups
20M30 Representation of semigroups; actions of semigroups on sets
54C05 Continuous maps
54C35 Function spaces in general topology
54D35 Extensions of spaces (compactifications, supercompactifications, completions, etc.)
54F15 Continua and generalizations
54F50 Topological spaces of dimension \(\leq 1\); curves, dendrites
57M25 Knots and links in the \(3\)-sphere (MSC2010)
16Y30 Near-rings
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Arens, R.F.,A topology for spaces of transformations, Annals of Mathematics 47 (1946), 480–495. · Zbl 0060.39704
[2] —-, and J. Dugundji,Topologies for function spaces, Pacific J. Math. 1 (1951), 5–31. · Zbl 0044.11801
[3] Beidleman, J.C.,On groups and their near-rings of functions, Amer. Math. Monthly 73 (1966), 981–983. · Zbl 0144.02103
[4] Berman, G. and R. J. Silverman,Simplicity of near-rings of transformations, Proc. Amer. Math. Soc. 10 (1959), 456–459. · Zbl 0092.26901
[5] Bruck, R. H.,A survey of binary systems, Springer-Verlag, New York (1966). · Zbl 0141.01401
[6] Cassel, R. T.,The ideal structure of some semigroups of continuous functions, Master’s thesis at State University of New York at Buffalo (1968).
[7] Cezus, F. A.,Green’s relations in semigroups of functions, Ph.D. thesis at Australian National University, Canberra, Australia (1972). · Zbl 0248.20082
[8] —-, K. D. Magill, Jr. and S. Subbiah,Maximal ideals of semigroups of endomorphisme, Bull. Aust. Math. Soc. 12 (1975), 211–225. · Zbl 0298.20064
[9] Clifford, A.H. and G. B. Preston,The algebraic theory of semigroups, Math. Surveys 7, Amer. Math. Soc.; Providence, Rhode Island; I (1961); II(1967). · Zbl 0111.03403
[10] Cook, H. and W.T. Ingram,Obtaining AR-like continua as inverse limits with only two bonding maps, Glasnik Math. 4(24)2 (1969), 309–311. · Zbl 0222.54042
[11] Englekíng, R. and S. Mrowka,On E-compact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Math. Astr. Phys. 6 (1958), 492–496.
[12] Fine, N. J. and G. E. Schweigert,On the group of homeomorphisms of an arc, Annals of Math. 62 (1955), 237–253. · Zbl 0066.41305
[13] Fox, R.H.,On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945), 429–432. · Zbl 0060.41202
[14] —-,Recent developments of knot theory at Princeton, Proc. International Congress of Math. Cambridge 2 (1950), 453–457.
[15] Gavrilov, M.,On a semigroup of continuous functions, Godishn. Sofiisk. un-ta. matem. f-t (1964), 377–380.
[16] Gelfand, I. and A. Kolmogoroff,On rings of continuous functions on topological spaces, Dokl. Akad. Nauk SSSR 22 (1939), 11–15. · Zbl 0021.41103
[17] Gillman L. and M. Jerison,Rings of continuous functions, Van Nostrand, Princeton, N. J. (1960). · Zbl 0093.30001
[18] Gluskin, L. M.,Semigroups of topological mappings, Dokl. Akad. Nauk SSR 125 (1959), 699–702 · Zbl 0107.01705
[19] —-,Transitive semigroups of transformations, Dokl. Akad. Nauk SSR 129 (1959), 16–18. · Zbl 0089.01901
[20] —-,The semigroup of homeomorphic mappings of an interval, Mat. Sb. (N.S.) 49(91) (1959), 13–28.
[21] –,On a semigroup of continuous functions, Dopovidi Akad. Nauk Ukrain. RSR (1960), 582–585.
[22] —-,The semigroup of homeomorphic mappings of an interval, Amer. Math. Soc. Transl. (20) 30 (1963), 273–290. · Zbl 0196.29503
[23] —-,Semigroups of topological transformations, Izv. Vysš. Učebn. Zaved. Matematika 1(32) (1963), 54–65. · Zbl 0122.02804
[24] Green, J.A.,On the structure of semigroups, Annals of Math. 54 (1951), 163–172. · Zbl 0043.25601
[25] De Groot, J.,Groups represented by homeomorphism groups, I, Math. Annalen 138 (1959), 80–102. · Zbl 0087.37802
[26] Harris, B. and L. Schoenfeld,The number of indempotent elements in symmetric semigroups, J. Comb. Theory 3 (1967), 122–135. · Zbl 0153.33104
[27] —-,Erratum to: The number of idempotent elements in symmetric semigroups, J. Comb. Theory 5 (1968), 104.
[28] Hedrlin, Z. and A. Pultr,Remark on topological spaces with given semigroups, Comment. Math. Univ. Carol. 4 (1963), 161–163. · Zbl 0151.30904
[29] Higman, G.,On infinite simple permutation groups, Publ. Math. Debrecen 3 (1954), 221–226. · Zbl 0057.25801
[30] Hocking, J. G. and G. S. Young,Topology, Addison-Wesley (1961).
[31] Hofer, R. D.,Algebraic structures for families of continuous functions, Ph.D. thesis at State University of New York at Buffalo (1971).
[32] —-,Restrictive semigroups of continuous functions on O-dimensional spaces, Canad. Math. Journ. 4(24) (1972), 598–611. · Zbl 0238.54005
[33] —-,Restrictive semigroups of continuous selfmaps on arcwise connected spaces, Proc. London Math. Soc. (3) 25 (1972), 358–384. · Zbl 0238.54004
[34] Hofmann, K. H. and P. S. Mostert,Elements of compact semigroups, Charles E. Merrill Books, Inc. Columbus, Ohio (1966). · Zbl 0161.01901
[35] Homma, T.,A theorem on continuous functions, Kodai Math. Sem. Rep. 1 (1952), 13–16. · Zbl 0046.28703
[36] Howie, J. M.,The subsemigroup generated by the idempotents of a full transformation semigroup, J. London Math. Soc. 41 (1966), 707–716. · Zbl 0146.02903
[37] Hurewicz, W. and H. Wallman,Dimension theory, Princeton Univ. Press (1941). · JFM 67.1092.03
[38] Jacobson, N.,Structure of rings, Amer.Math.Soc., Providence (1956). · Zbl 0073.02002
[39] Jarnik, V. and V. Knichal,Sur l’approximation des fonctions continues par les superpositions de deux fonctions, Fund. Math. 24 (1935), 206–208. · JFM 61.0229.02
[40] Kim, H. O.,On the product of structure spaces, Kyungpook Math. J. 11 (1971), 29–32. · Zbl 0227.54035
[41] Lipiński, J. S.,Sur l’uniformization des fonctions continues, Bull. de l’Acad. Polon. Sci. III 5 (1957), 1019–1021.
[42] Ljapin, E. S.,Abstract characterization of certain semigroups of transformations, Leningradskii Gosudarstvenny Pedayogičeskii Institut im. A. I. Gercena. Učenye Zapinski (Leningrad).
[43] Magill, Jr., K. D.,Semigroups of continuous functions, Amer. Math. Monthly 71 (1964), 984–988. · Zbl 0133.16002
[44] —-,Some homomorphism theorems for a class of semigroups, Proc. London Math. Soc. (3) 14 (1965), 517–526. · Zbl 0135.04101
[45] —-,Semigroups of functions on topological spaces, Proc. London Math. Soc. (3) 14 (1966), 507–518. · Zbl 0151.29803
[46] —-,Semigroup structures for families of functions, II;continuous functions, J. Aust. Math. Soc. 7 (1967), 95–107. · Zbl 0148.01502
[47] —-,Another S-admissible class of spaces, Proc. Amer. Math. Soc. 8 (1967), 95–107.
[48] —-,Subgroups of semigroups of functions, Port. Math. 26 (1967), 133–147. · Zbl 0174.04404
[49] —-,Topological spaces determined by left ideals of semigroups, Pac. Math. J. (2) 24 (1968), 319–330. · Zbl 0157.53401
[50] —-,Restrictive semigroups of closed functions, Can. J. Math. 20 (1968), 1215–1229. · Zbl 0164.23303
[51] —-,Semigroups of functions generated by idempotents, London Math. J. 44 (1969), 236–242. · Zbl 0162.54505
[52] —-,Isotopisms of semigroups of functions, Trnas. Amer. Math. Soc. 148 (1970), 121–128. · Zbl 0195.51803
[53] —-,Structure spaces of semigroups of continuous functions, Trans. Amer. Math. Soc. 149 (1970), 595–600. · Zbl 0199.57401
[54] —-,K-structure spaces of semigroups generated idempotents, London Math. J. (2) 3 (1971), 321–325. · Zbl 0208.50801
[55] —-, I-subsemigroups and {\(\alpha\)}-monomorphisms, J. Aust. Math. Soc. 16 (1973), 146–166. · Zbl 0267.54009
[56] —-,Semigroups which admit few embeddings, Fund. Math. 85 (1974), 37–53. · Zbl 0287.54041
[57] –,Embedding the full transformation semigroup into S(X) (to appear).
[58] —- and S. Subbiah,Green’s relations for regular elements of semigroups of endomorphisms, Can. J. Math. 26 (1974), 1484–1497. · Zbl 0316.20041
[59] —-,Embedding S(X)into S(Y), Dissertiones Math. 120 (1974), 1–47.
[60] – and –,The partially ordered family of regular R-classes of S(X), Aequat. Math. (to appear).
[61] —-,Schützenberger groups of some irregular H-classes, Semigroup Forum 10 (1975), 283–314. · Zbl 0305.54042
[62] —-,Schützenberger groups of H-classes a containing odd degree polynomials, Semigroup Forum, 11 (1975), 49–78. · Zbl 0299.20040
[63] – and –,Green’s relations for regular elements of sandwich semigroups, II;semigroups of continuous functions (to appear). · Zbl 0379.20055
[64] Mal’cev, A.A.,Semigroups of continuous functions, First Tiraspol Symposium on General Topology, Moscow (1965).
[65] –,On a class of topological spaces, Thesis for a report at the GSM, Moscow (1966), 23.
[66] —-,A remark on a theorem of Gavrilov, Trudy Trash PI, Matematika 37 (1966), 30–32.
[67] Mal’cev, A. I.,Symmetric groupoids, Mat. Sbornik 31 (1952), 136–151.
[68] McCleary, S. H.,Some simple homeomorphism groups having nonsolvable outer automorphism groups (to appear). · Zbl 0377.20034
[69] Miller, D. D. and A. H. Clifford,Regular D-classes in semigroups, Trans. Amer. Math. Soc. 82 (1956), 270–280. · Zbl 0071.02001
[70] Mioduszewski, J.,On a quasi-ordering in the class of continuous mappings of a closed interval into itself, Colloq. Math. 9 (1962), 233–240. · Zbl 0107.27603
[71] Mrowka, S.,Further results on E-compact spaces, I, Acta Math. 120 (1968), 161–185. · Zbl 0179.51202
[72] Nurutdinov, B.S.,Topologies of spaces described by semigroups of mappings, Vestnik Moskovskogo Universiteta. Matematika (4) 28 (1973), 24–29. · Zbl 0275.54027
[73] Paalman-de Miranda, A.B.,Topological representations of semigroups, Mathematisch Centrum Amsterdam. Afdeling Zuivere Wiskunde (1966), ZW-008. · Zbl 0147.00805
[74] Rajagopalan, M. and A. Wilansky,Reversible topological spaces, J. Aust. Math. Soc. 6 (1966), 129–138. · Zbl 0151.29602
[75] Reidemeister, K.Knotentheorie, Springer (1932).
[76] Schreier, J.,Über Abbildungen einer abstrakten Menge auf ihre Teilmenge, Fund. Math. 28 (1937), 261–264. · JFM 63.0073.02
[77] —-, and S. Ulam,Über topologische Abbildungen der euklidschen Sphäre, Fund. Math. 23 (1934), 102–118. · JFM 60.0529.02
[78] Schützenberger, M. P.,D représentation des demi-groupes, C. R. Acad. Sci. Paris 244 (1957), 1994–1996.
[79] Seifert, H. and W. Threlfall,Old and new results on knots, Can. J. Math. 2 (1950), 1–15. · Zbl 0035.25102
[80] Sierpinski, W.,Sur l’approximation des fonctions continues parles superpositions de quatre fonctions, Fund. Math. 23 (1934), 119–120. · Zbl 0011.10605
[81] Sikorski, R. and K. Zarankiewicz,On uniformization of functions (I), Fund. Math. 41 (1954), 339–344. · Zbl 0064.05501
[82] Šneperman, L. B.,Semigroups of continuous transformations, Dokl. AN SSSR (3) 144 (1962), 509–511.
[83] —-,Semigroups of continuous mappings of topological spaces, Sibirsk Mat. Ž. 6 (1965), 221–229.
[84] Stone, M. H.,Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375–481. · Zbl 0017.13502
[85] Subbiah, S.,Topics in semigroups of continuous functions. Ph.D. thesis at State University of New York at Buffalo (1973). · Zbl 0255.20043
[86] –,Some finitely generated subsemigroups of S(X), Fund. Math. 87(1975) · Zbl 0293.54042
[87] –,A note on the compact-open topology for semigroups of continuous selfmaps (to appear).
[88] Suschkewitsch, A. K.,Theory of operations as a generalized theory of groups, dissertation, Voronezh (1922).
[89] Šutov, E. G.,Homomorphisms, of certain semigroups of continuous functions, Sibirsk Mat. Ž. 4 (1963), 693–701.
[90] Warndof, J.C.,Topologies uniquely determined by their continuous selfmaps, Fund. Math. 66 (1969/70), 25–43. · Zbl 0189.23201
[91] Whittaker, J. V.,On isomorphic groups and homeomorphic spaces, Ann. of Math. (2) 78 (1963), 74–91. · Zbl 0116.14501
[92] Whyburn, G. T.,Analytic topology, New York AMS Colloquium publication, 28(1942). · Zbl 0061.39301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.