×

The formal Hodge filtration. (English) Zbl 0339.14004


MSC:

14B20 Formal neighborhoods in algebraic geometry
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
14E25 Embeddings in algebraic geometry
32B10 Germs of analytic sets, local parametrization
14F25 Classical real and complex (co)homology in algebraic geometry
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Artin, M.: Algebraic approximation of structures over complete local rings. Publ. Math. I.H.E.S.36, 23-58 (1969) · Zbl 0181.48802
[2] Artin, M.: Algebrization of formal moduli II-existence of modifications. Ann. of Math.91, 88-135 (1970) · doi:10.2307/1970602
[3] Berthelot, P.: Cohomologie Cristalline des Schemas de Caracteristiquep>0. Lecture Notes in Math.407, Berlin-Heidelberg-New York: Springer 1974 · Zbl 0298.14012
[4] Cox. D.: (to appear)
[5] Deligne, P.: Theoreme de Lefchetz et critères de dégenerescence de suites spectrales. Publ. Math. I.H.E.S.35, 107-126 (1968) · Zbl 0159.22501
[6] Deligne, P.: Theorie de Hodge II. Publ. Math. I.H.E.S.40, 5-58 (1971) · Zbl 0219.14007
[7] Deligne, P.: Theorie de Hodge III. Publ. Math. I.H.E.S.44, 5-77 (1975) · Zbl 0237.14003
[8] Gieseker, D.: On two theorems of Griffiths about embeddings with ample normal bundle. (To appear) · Zbl 0369.14006
[9] Greco, S.: Sulla nozione di preschema henseliano. Rend. Acc. Naz. Lincei50, 118-121 (1971)
[10] Griffiths, P.: The extension problem in complex analysis I. Proc. Conference in Complex Analysis, Univ. of Minnesota (1964) · Zbl 0129.23205
[11] Griffiths, P.: The extension problem in complex analysis II: Embeddings with positive normal bundle. Am. J. of Math.88, 366-446 (1966) · Zbl 0147.07502 · doi:10.2307/2373200
[12] Grothendieck, A.: Hodge’s general conjecture is false for trivial reasons. Topology8, 229-304 (1969) · Zbl 0177.49002 · doi:10.1016/0040-9383(69)90016-0
[13] Grothendieck, A., Dieudonné, J.: Elements de géometrie algébrique. III. Publ. Math. I.H.E.S.
[14] Grothendieck, A., ét al.: Seminaire de géometried algébrique (SGA 1). Lecture Notes in Math.224. Berlin-Heidelberg-New York: Springer 1971
[15] Hartshorne, R.: Ample subvarieties of algebraic varietier. Lecture Notes in Math.156. Berlin-Heidelberg-New York: Springer 1971
[16] Hartshone, R.: Conomology with compact supports for coherent sheaves on an algebraic variety. Math. Ann.195, 199-207 (1972) · Zbl 0254.14010 · doi:10.1007/BF01419594
[17] Hironka, H.: Formal line bundles along exceptional loci. Proc. of the Bombay Colloquim on Algebraic Geometry pp. 201-218 (1968)
[18] Hironka, H.: On some formal embeddings. III. J. of Math.12, 587-602 (1968)
[19] Hironka, H.: Some algebraicity problems in algebraic geometry. (Handwritten notes)
[20] Hironka, H., Matsumura, H.: Formal functions and formal embeddings. J. Math. Soc. of Japan20, 52-82 (1968) · Zbl 0157.27701 · doi:10.2969/jmsj/02010052
[21] Katz, N.: Algebraic solutions of differential equations (p-curvature and the Hodge filtration). Inventiones math.18, 1-118 (1972) · Zbl 0278.14004 · doi:10.1007/BF01389714
[22] Katz, N., Oda, T.: On the differentiation of DeRham cohomology classes with respect to parameters. J. Math. Kyoto Univ.8, 199-213 (1968) · Zbl 0165.54802
[23] Kodaira, K., Spencer, D.: On deformations of complex structures I, II. Ann. of Math.67, 328-466 (1958) · Zbl 0128.16901 · doi:10.2307/1970009
[24] Mumford, D.: Varieties defined by quadratic equations. C.I.M.E. (1969) · Zbl 0169.23301
[25] Mumford, D.: Enriques’ classification of surfaces in charp: I. Global Analysis. Princeton Math. Series No. 29; Princeton University Press 1969 · Zbl 0188.53201
[26] Ogus, A.: On the formal neighborhood of a subvariety of projective space (to appear in the American J.) · Zbl 0331.14002
[27] Raynaud, M.: Algèbres locaux Henséliens. Lecture Notes in Math.169. Berlin-Heidelberg-New York: Springer 1970
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.