×

zbMATH — the first resource for mathematics

Corational extensions and pseudo-projective modules. (English) Zbl 0339.16006

MSC:
16D40 Free, projective, and flat modules and ideals in associative algebras
18E40 Torsion theories, radicals
16P50 Localization and associative Noetherian rings
PDF BibTeX Cite
Full Text: DOI
References:
[1] H. Bass, Finitistic dimension and a homological generalization of semiprimary rings,Trans. Amer. Math. Soc.,95 (1960), 466–488. · Zbl 0094.02201
[2] J. A. Beachy, A generalization of injectivity,Pacif. J. Math. 41 (1972), 313–328. · Zbl 0217.34001
[3] L. Bican, QF-3’ modules and rings,Comment. Math. Univ. Carol.,14 (1973), 295–303. · Zbl 0259.16005
[4] R. C. Courter, Finite direct sums of complete matrix rings over perfect completely primary rings,Canad. J. Math.,21 (1969), 430–446. · Zbl 0182.05502
[5] R. C. Courter, The maximal co-rational extension by a module,Canad. J. Math.,18 (1966), 953–962. · Zbl 0144.02301
[6] C. Faith, Lectures on injective modules and quotient rings,Lecture Notes in Mathematics 49, Springer Verlag, 1969. · Zbl 0162.05002
[7] J. P. Jans, Torsion associated with duality,Tohôku Math. J.,24 (1972), 449–452. · Zbl 0245.16019
[8] I. N. Kašu, O dělimosti v moduljach,Mat., issled., Kišiněv,6 (1971), 74–84.
[9] A. P. Mišina, L. A. Skornjakov,Abelevy gruppi i moduli (Moscow, 1969).
[10] B. Stenström, Rings and modules of quotients,Lecture Notes in Mathematics 237, Springer Verlag, 1971.
[11] H. Storrer, Rational extensions of modules,Pacif. J. Math.,38 (1971), 785–794. · Zbl 0209.07003
[12] L. E. T. Wu, J. P. Jans, On quasi-projectives,Ill. J. Math.,11 (1967), 439–448. · Zbl 0153.06301
[13] G. M. Zuckerman O psevdo-injektivnych moduljach i samo-psevdo-injektivnycy kolcach,Mat. Zamětki,7 (1970), 369–380.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.