×

Completely prime ideals and idempotents in mobs. (English) Zbl 0339.22002


MSC:

22A15 Structure of topological semigroups
20M10 General structure theory for semigroups
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] D. H. Adams: Semigroups with no non-zero nilpotent elements. Math. Z. 123 (1971), 168-176. · Zbl 0212.35803
[2] W. H. Cornish: Subdirectly irreducible semirings and semigroups without nonzero nilpotents. Canad. Math. Bull. 16 (1973), 45-47. · Zbl 0271.16021
[3] W. M. Faucett R. J. Koch, K. Numakura: Complements of maximal ideals in compact semigroups. Duke Math. J. 22 (1955), 655-661. · Zbl 0065.25303
[4] R. J. Koch: Remarks on primitive idempotents in compact semigroups with zero. Proc. Amer. Math. Soc. 5 (1954), 828-833. · Zbl 0056.02704
[5] R. J. Koch, A. D. Wallace: Maximal ideals in compact semigroups. Duke Math. J. 21 (1954), 681-685. · Zbl 0057.01502
[6] K. Iséki: On ideals in semirings. Proc. Japan Acad. 34 (1958), 501 - 509. · Zbl 0085.02101
[7] K. Numakura: Prime ideals and idempotents in compact semigroups. Duke Math. J. 24 (1957), 671-680. · Zbl 0218.22004
[8] A. B. Paalman-de Miranda: Topological Semigroups. second edition. Mathematisch Centrum, Amsterdam, 1970. · Zbl 0242.22003
[9] Št. Schwarz: Prime ideals and maximal ideals in semigroups. Czech. Math. J. 19 (1969), 72-79. · Zbl 0176.29503
[10] K. P. Shum, C. S. Hoo: On nilpotent elements of semigroups. Colloquium Math. 25 (1972), 211-224. · Zbl 0235.22005
[11] K. P. Shum: On compressed ideals in topological semigroups. Czech. Math. J. 25 (100), (1975), 261-273. · Zbl 0316.22004
[12] K. P. Shum: On the boundary of algebraic radical of ideals in topological semigroups. Acta Math. Sci. Hung. 25 (1974), 15-19. · Zbl 0276.22008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.