×

On uncomplemented subspaces of \(L_p\), \(1<p<2\). (English) Zbl 0339.46022


MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46B99 Normed linear spaces and Banach spaces; Banach lattices
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] G. Bennett, V. Goodman and C. M. Newman,Norms of random matrices, Pacific J. Math.59 (1975), 359–365. · Zbl 0325.47018
[2] L. E. Dor, On projections in L1, Ann. of Math.102 (1975), 463–474. · Zbl 0314.46027
[3] A. Dvoretsky,Some results on convex bodies and Banach spaces, Proc. Symp. on Linear Spaces, Jerusalem, 1961, 123–174.
[4] T. Figiel, J. Lindenstrauss and V. D. Milman,The dimension of almost spherical sections of convex bodies, to appear. · Zbl 0375.52002
[5] J. Khinchine,Über die Diadischen Brüche, Math. Z.18 (1923), 109–116. · JFM 49.0132.01
[6] V. D. Milman,A new proof of Dvoretzky’s theorem on sections of convex bodies, Functional Anal. Appl.5 (1971), 28–37 (Russian).
[7] W. Orlicz,Über unbedingte Konvergenz in Funktionenräumen (I), Studia Math.4 (1933), 33–37. · Zbl 0008.31501
[8] A. Pelczynski,Projections in certain Banach spaces, Studia Math.19 (1960), 209–228. · Zbl 0104.08503
[9] A. Pelczynski and H. P. Rosenthal,Localization techniques in L p spaces, Studia Math.52 (1975), 263–289. · Zbl 0297.46023
[10] C. A. Rogers,Covering a sphere with spheres, Mathematika10 (1963), 157–164. · Zbl 0158.19603
[11] H. P. Rosenthal,Projections onto translation invariant subspaces of L P (G), Mem. Amer. Math. Soc.63 (1966). · Zbl 0203.43903
[12] H. P. Rosenthal,On the subspaces of L p (p > 2)spanned by sequences of independent random variables, Israel J. Math.8 (1970), 273–303. · Zbl 0213.19303
[13] W. Rudin,Trigonometric series with gaps, J. Math. Mech.9 (1960), 203–227. · Zbl 0091.05802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.