A Walsh series direct method for solving variational problems. (English) Zbl 0339.49017


49M15 Newton-type methods
33E99 Other special functions
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
Full Text: DOI


[1] Rademacher, H., Einige Salze über Reihen von allgemeinen Orthogonafuntionen, Math. Ann., Vol. 87, 712-738 (1922)
[2] Walsh, J. L., A closed set of orthogonal functions, Am. J. Math., Vol. 45, 5-24 (1923)
[3] Lee, J. D., Review of recent work on applications of Walsh functions in communications, (Proc. Walsh Function Symp. (1970), Nav. Res. Labs: Nav. Res. Labs Wash. D.C), 26-35
[4] Harmuth, H. F., Application of Walsh function in communications, IEEE Spect., Vol. 6, No. 11, 82-91 (Nov. 1969)
[5] Gibbs, J. E.; Gebbie, H. A., Application of Walsh function to transform spectroscopy, Nature, Vol. 224, 1012-1013 (Dec. 1969)
[6] Thomas, C. W.; Welch, A. J., Heart rate representation using Walsh functions, (Proc. Walsh Function Symp. (1972), Nav. Res. Labs: Nav. Res. Labs Wash., D.C), 154-158
[7] Picher, F., Walsh function and optimal linear systems, (Proc. Walsh Function Symp. (1970), Nav. Res. Labs: Nav. Res. Labs Wash., D.C), 17-22
[8] Corrington, M. S., Solution of differential and integral equations with Walsh functions, IEEE Trans. Circuit Theory, Vol. CT-20, No. 5, 470-475 (Sept. 1973)
[9] Gelfand, I. M.; Fomin, S. V., Calculus of Variations (1963), Prentice-Hall: Prentice-Hall Englewood Cliffs, N.J · Zbl 0127.05402
[10] Brewster, C. D., Approximate Methods of Higher Analysis (1958), Interscience: Interscience New York · Zbl 0083.35301
[11] Elsgolc, E. L., Calculus of Variation (1961), Pergamon Press: Pergamon Press London · Zbl 0101.32001
[12] Schechter, R. S., The Variation Method in Engineering, ((1967), McGraw-Hill: McGraw-Hill New York), 23-24 · Zbl 0176.10001
[13] Neuman, C. P.; Sen, A., Weighted residual methods in optimal control, IEEE Trans. Auto Control, Vol. AC-19, 67-69 (Feb. 1974) · Zbl 0291.49026
[14] Mang, J. H., A sequency-ordered fast Walsh transform, IEEE Trans. Audio X Electroacoust, Vol. AU-20, No. 3, 204-205 (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.