×

zbMATH — the first resource for mathematics

A classification of space-time structures. (English) Zbl 0339.53023

MSC:
53C10 \(G\)-structures
55R10 Fiber bundles in algebraic topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, J.L., Principles of relativity physics, (1967), Academic Press New York
[2] Bortolotti, E., Ann. of math., 32, 361, (1931)
[3] Bourbaki, N., Variétés différentielles et analytiques, (), 8-15, §
[4] Bourbaki, N., Éléments de mathématique, (), Ch. II · Zbl 0165.56403
[5] Cartan, É., Ec. norm., Ec. norm., Ec. norm., 42, 17, (1925)
[6] Cartan, É., Comptes rend., 174, 593, (1922), (Paris)
[7] Cartan, É., Bull. soc. math. France, 52, 205, (1924)
[8] Crumeyrolle, A., Ann. inst. H. Poincaré, Ann. inst. H. Poincaré, 14, 309, (1971)
[9] Dieudonné, J., Éléments d’analyse, Éléments d’analyse, vol. 4, (1971), Gauthier-Villars Paris · Zbl 0217.00101
[10] Ehlers, J.; Pirani, F.A.E.; Schild, A., The geometry of free fall and light propagation, () · Zbl 0267.53036
[11] Ehlers, J.; Schild, A., Commun. math. phys., 32, 119, (1973)
[12] Ehresmann, C., Comptes rend., Comptes rend., Comptes rend., Comptes rend., Comptes rend., Comptes rend., Comptes rend., Comptes rend., 240, 1755, (1955), (Paris)
[13] Einstein, A.; Grossmann, M., Z. math. und phys., 62, 225, (1913)
[14] Friesecke, H., Math. annalen, 94, 101, (1925)
[15] Geroch, R., J. math. phys., J. math. phys., 11, 343, (1970), Part II · Zbl 0199.28303
[16] Harnad, J.P.; Pettitt, R.B., gauge theories for space-time symmetries, (1976), Department of Physics, Carleton University, (Preprint)
[17] Hehl, F.W.; von der Heyde, P.; Kerlick, G.D., Phys. rev., D10, 1066, (1974)
[18] Kobayashi, S., Transformation groups in differential geometry, (1972), Springer Berlin · Zbl 0246.53031
[19] Kobayashi, S., Canonical forms on frame bundles of higher order contact, () · Zbl 0109.40601
[20] Kobayashi, S.; Nomizu, K., Foundations of differential geometry, Foundations of differential geometry, vol. II, (1969), Interscience New York · Zbl 0175.48504
[21] Krupka, D.; Trautman, A., Bull. acad. polon. sci., Sér. sci. math. astr. et phys., 22, 207, (1974)
[22] Künzle, H.P., Ann. inst. H. Poincaré, 17, 337, (1972)
[23] Lichnérowicz, A., Théoriés relativistes de la gravitation et de l’électromagnétisme, (1955), Masson Paris · Zbl 0065.20704
[24] Lichnérowicz, A., J. gen. relativity gravitation, 1, 235, (1971)
[25] Milnor, J., Enseign. math., Topology, 3, 223, (1965)
[26] Misner, C.W.; Thorne, K.S.; Wheeler, J.A., Gravitation, (1973), Freeman San Francisco
[27] Pirani, F.A.E., Symposia Mathematica, XII, 67, (1973)
[28] Schouten, J.A., Ricci calculus, (1954), Springer Berlin · Zbl 0057.37803
[29] Sciama, D.W., J. math. phys., 2, 472, (1961)
[30] Steenrod, N., The topology of fibre bundles, (1951), Princeton Univ. Press Princeton · Zbl 0054.07103
[31] Steenrod, N., Lectures on differential geometry, (1964), Prentice-Hall Englewood Cliffs
[32] Trautman, A., Theory of gravitation, ()
[33] Trautman, A., Comparison of Newtonian and relativistic theories of space-time, ()
[34] Trautman, A.; Bleuler, K.; Reetz, A., In finitesimal connections in physics, The Proceedings of the symposium on new mathematical methods in physics and problems in general relativity, (1973), Bonn
[35] Trautman, A., Reports math. phys., 1, 29, (1970)
[36] Trautman, A., Symposia math., XII, 139, (1973)
[37] Trautman, A., Ann. N.Y. acad. sciences, 262, 241, (1975)
[38] Trautman, A.; Pirani, F.A.E.; Bondi, H., Lectures on general relativity, (1965), Prentice-Hall Englewood Cliffs · Zbl 0176.55402
[39] Veblen, O.; Thomas, T.Y., Trans. A.M.S., 25, 551, (1923)
[40] Weyl, H., Zur infinitesimalgeometrie: einordnung der projektiven und der konformen auffasung, Göttinger nachr., 99, (1921) · JFM 48.0844.04
[41] Yang, C.N., Phys. rev. lettr., 35, 445, (1974)
[42] Chen, Yuen Ping, Cahiers de topol. et Géom. diff., Comptes rend., 270, 1589, (1970), (Paris)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.