×

Séries d’Eisenstein et transcendance. (French) Zbl 0341.10031


MSC:

11J61 Approximation in non-Archimedean valuations
11J81 Transcendence (general theory)
11F12 Automorphic forms, one variable
11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)
30C80 Maximum principle, Schwarz’s lemma, Lindelöf principle, analogues and generalizations; subordination
14H45 Special algebraic curves and curves of low genus
33E05 Elliptic functions and integrals

References:

[1] BERTRAND (D.) . - Un théorème de Schneider-Lang sur certains domaines non simplement connexes , Séminaire Delange-Pisot-Poitou : Théorie des nombres, 16e année, 1974 / 75 , G-18, 13 p. Numdam | Zbl 0318.10024 · Zbl 0318.10024
[2] LANG (S.) . - Transcendental numbers and diophantine approximations , Bull. Amer. math. Soc, t. 77, 1971 , p. 635-677. Article | MR 44 #6615 | Zbl 0218.10053 · Zbl 0218.10053 · doi:10.1090/S0002-9904-1971-12761-1
[3] MASSER (D.) . - Elliptic functions and transcendence . - Berlin Springer-Verlag, 1975 (Lecture Notes in Mathematics, 437). MR 52 #296 | Zbl 0312.10023 · Zbl 0312.10023
[4] ROQUETTE (P.) . - Analytic theory of elliptic functions over local fields . - Göttingen, Vandenhoeck & Ruprecht, 1970 (Hamburger mathematische Einzelschriften, 1). MR 41 #5376 | Zbl 0194.52002 · Zbl 0194.52002
[5] SCHNEIDER (T.) . - Einführung in die transzendenten Zahlen . - Berlin Springer-Verlag, 1957 (Die Grundlehren der mathematischen Wissenschaften, 81). Zbl 0077.04703 · Zbl 0077.04703
[6] SIEGEL (C. L.) . - Bestimmung der elliptischen Modulfunktion durch eine Transformationsgleichung , Abh. math. Sem. Univ. Hamburg, t. 27, 1964 , p. 32-38 MR 29 #2391 | Zbl 0119.29701 · Zbl 0119.29701 · doi:10.1007/BF02993054
[7] WALDSCHMIDT (M.) . - Nombres transcendants . - Berlin, Springer-Verlag, 1974 (Lecture Notes in Mathematics, 402). Zbl 0302.10030 · Zbl 0302.10030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.