zbMATH — the first resource for mathematics

On unirationality of supersingular surfaces. (English) Zbl 0341.14010

14J25 Special surfaces
14M20 Rational and unirational varieties
Full Text: DOI EuDML
[1] Artin, M.: Supersingular K 3 surfaces. Ann. Sci. Éc. Norm. Sup.7, 543-568 (1974) · Zbl 0322.14014
[2] Bombieri, E., Mumford, D.: Enriques’ classification of surfaces in char. p, II. to appear · Zbl 0348.14021
[3] Lang, S.: Abelian varieties. New York: Interscience 1959 · Zbl 0099.16103
[4] Serre, J.-P.: On the fundamental group of a unirational variety. J. London Math. Soc.34, 481-484 (1959) · Zbl 0097.36301
[5] Shioda, T.: An example of unirational surfaces in characteristic p. Math. Ann.211, 233-236 (1974) · Zbl 0283.14009
[6] Shioda, T.: On elliptic modular surfaces. J. Math. Soc. Japan24, 20-59 (1972) · Zbl 0226.14013
[7] Shioda, T.: Algebraic cycles on certain K 3 surfaces in characteristic p. Proc. Int. Conf. on Manifolds (Tokyo, 1973) 357-364 (1975)
[8] Weil, A.: Number of solutions of equations in finite fields. Bull. Amer. Math. Soc.55, 497-508 (1949) · Zbl 0032.39402
[9] Weil, A.: Jacobi sums as ?Grössencharaktere?. Trans. Amer. Math. Soc.73, 487-495 (1952) · Zbl 0048.27001
[10] Grothendieck, A.: Revètements étales et groupe fondamental (SGA 1). Lecture Notes No. 224. Berlin, Heidelberg New York: Springer 1971
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.